Принципы применения математических методов. Международный студенческий научный вестник. Классификация методов моделирования

Принципы применения математических методов. Международный студенческий научный вестник. Классификация методов моделирования

Решение практических задач математическими методами последова­тельно осуществляется путем математической формулировки задачи (разработка математической модели), выбора метода проведения исследования полученной математической модели, анализ полученного математического результата.

Математическая формулировка задачи представляется в виде чисел, геометрических образов, функций, систем уравнений и т.п.

Математическая модель представляет собой систему математических, соотношений - формул, функций, уравнений, систем уравнений, описываю­щих те или иные стороны изучаемого объекта. Первым этапом математичес­кого моделирования является постановка задачи, определение объекта и целей исследования, задание критериев (признаков) изучения объектов и управления ими. Неправильная или неполная постановка задачи может свести на нет результаты всех последующих, этапов.

Важным на этом этапе! является установление границ области влияния изучаемого объекта, определяемыми областью значимого взаимодействия с внешними объектами, Учет области влияния объекта при математическом моделировании позволяет включить в эту модель все существенные факторы и рассматривать моделируемую систему как замкнутую. Последнее значительно упрощает математическое исследование.

Следующим этапом моделирования является выбор типа математической модели, определяющим направление всего исследования. Последовательно строится несколько моделей и по результатам их исследования и сравне­ния с реальностью устанавливается наилучшая из них.

На этапе выбора типа модели при помощи анализа данных поискового эксперимента устанавливаются: линейность или нелинейность, динамич­ность или статичность, а также степень детерминированности исследуемо­го объекта.

Линейность устанавливается по характеру статической характеристи­ки исследуемого объекта. Под статической характеристикой объекта пони­мается связь между величиной внешнего воздействия на объект (величиной входного сигнала) и максимальной величиной его реакции на это воздейс­твие (максимальной амплитудой выходной характеристики).

Под выходной характеристикой объекта понимается изменение выход­ного сигнала во времени. Если статическая характеристика объекта ока­зывается линейной, то моделирование осуществляется с использованием линейных функций.

Нелинейность статической характеристики и наличие запаздывания реагировании объекта на внешнее воздействие являются признаками нели­нейности объекта. В этом случае применяется нелинейная математическая модель.

Применение линейной математической модели значительно упрощает ее дальнейший анализ, поскольку можно пользоваться принципом суперпозиции. Принцип суперпозиции утверждает, что когда на линейный объект воздействуют несколько входных сигналов, то каждый из них фильтруется объектом так, что их взаимодействие с объектом происходит независимо друг от друга. Общий выходной сигнал линейного объекта по принципу су­перпозиции образуется в результате суммирования его реакции на каждый входной сигнал.

Установление динамичности и статичности осуществляется по поведе­нию исследуемых показателей объекта во времени, для детерминированного объекта судят о статичности или динамичности по характеру выходной ха­рактеристики. Если среднее арифметическое значение выходного сигнала по разным отрезкам времени не выходит за допустимые пределы, определя­емые точностью методики измерения исследуемого показателя, то это сви­детельствует о статичности объекта. Для вероятностных объектов статич­ность устанавливается по изменчивости уровня ее относительной органи­зации. Если изменчивость этого уровня не превышает допустимые пределы, то объект статичен.

Важным является выбор отрезков времени, на которых устанавливает­ся статичность или динамичность объекта. Если объект на малых отрезках времени оказался статичным, то при увеличении этих отрезков результат не изменится. Если же статичность установлена для крупных отрезков времени, то при их уменьшении результат может измениться и статичность объекта может перейти в динамичность.

При выборе типа (класса), модели вероятностного объекта важно установление его стационарности. О стационарности или нестационарности вероятностных объектов судят по изменению во времени параметров зако­нов распределения случайных величин (средней арифметической и среднего квадратического отклонения).

Установление общих характеристик объекта позволяет выбрать мате­матический аппарат, на базе которого строится математическая модель. Так, для детерминированных объектов может использоваться аппарат ли­нейной и нелинейной алгебры, теории дифференциальных и интегральных уравнений. При описании квазидетерминированных (вероятностно-детерми­нированных) объектов может использоваться теория дифференциальных уравнений с коэффициентами подчиняющимися определенным законам.

Цель и задачи, которые ставятся при математическом моделировании, играют важную роль при выборе типа модели. Практические задачи требуют простого математического аппарата, фундаментальные - более сложного, допускают прохождение иерархии математических моделей, начиная от чисто функциональных и кончая моделями, использующими твердо установленные закономерности и структурные параметры.

Важным при выборе модели является анализ информационного массива , из которого в частности устанавливается непрерывность или дискретность объекта. Для непрерывных объектов для их моделирования используются дифференциальные уравнения, для дискретных - теории автоматов.

Результаты поискового эксперимента и априорный информационный массив позволяют установить схему взаимодействия объекта с внешней средой по соотношению входных и выходных величин. Существует четыре схемы взаимодействия:

одномерно - одномерная схема (00С) (рис. а)

На объект воздействует только один фактор, а его поведение рассматривается по одному показателю (один выходной сигнал);

одномерно-многомерная схема (ОМС) (рис. б)

На объект воздействует один фактор, а его поведение оценивается по нескольким показателям;

многомерно-одномерная схема (ШОС) (рис. в)

На объект воздействует несколько факторов, а его поведение оце­нивается по одному показателю;

многомерно-многомерная схема (ММС) (рис. г)

На объект воздействует множество факторов и его поведение оце­нивается по множеству показателей.

При 00С для статического стационарного детерминированного объекта постоянное входное воздействие связывается с постоянным выходным сиг­налом через постоянный коэффициент. Если объект нестационарный, то указанная связь описывается различными функциями у - f(x) (чаще всего описывается полиномом).

В случае МОС статический стационарный детерминированный объект описывается следующей моделью:

при равнозначности внешних воздействий

при неравнозначности внешних воздействий

,

где (- постоянный коэффициент,m - число внешних воздействий (факто-

Для статического нестационарного объекта (при той же схеме взаи­модействия) используется модель в виде полинома:

где ,- число парных и тройных сочетаний факторов.

При ОМС статический стационарный и нестационарный объект описыва­ется аналогично 00С статического стационарного объекта. При этом опре­деляются отдельно математические модели входного воздействия с каждый выходным сигналом. Выходные сигналы считаются независимыми.

ММС сводится к МОС и математическая модель объекта принимается аналогичной изложенной выше.

Выбор вида модели динамического объекта для всех схем взаимодействия сводится к составлению дифференциальных уравнений. Если интересующие переменные являются функциями времени, то для моделирования используются обыкновенные дифференциальные уравнения. Если же эти переменные являются также функциями пространственных координат, то для описания таких объектов недостаточно обыкновенных и следует пользоваться более сложными дифференциальными уравнениями в частных произ­водных.

Физические задачи обычно приводят к одному из следующих видов \ уравнений:

1) дифференциальное уравнение в дифференциалах.

2) дифференциальное уравнение в производных.

3) простейшие интегральные уравнения с последующим преобразованием их в дифференциальные уравнения.

Уравнения в дифференциалах . Из условия задачи составляются приближенные соотношения между дифференциалами. Для этого малые приращения величин заменяются их дифференциалами, неравномерно протекающие процессы в течение малого промежутка времени dt рассматриваются как равномерные.

Уравнения в производных . Из условия задачи составляются прибли­женные соотношения между скоростями изменения функции и аргумента (dy/dt).

Простейшие интегральные уравнения . При рассмотрении работы сил, объемов тел, площадей криволинейных поверхностей их можно описать при помощи определенного интеграла или интегральных формул. В случае если при таком описании неизвестные функции попадают под знак интеграла, то получаемая формальная запись называется интегральным уравнением. Пос­ледующее дифференцирование интегрального уравнения преобразует его в дифференциальное.

Процесс выбора математической модели объекта заканчивается ее предварительным контролем по следующим видам контроля:

Контроль размерностей сводится к проверке выполнения правила, согласно которому приравниваться и складываться могут только величины одинаковой размерности.

Контроль порядков направлен.на упрощение модели. При этом опреде­ляются порядки складываемых величин и явно малозначительные слагаемых отбрасываются.

Контроль характера зависимостей сводится к проверке направления и скорости изменения одних величин при изменении других. Направления и скорость должны соответствовать физическому смыслу задачи.

Контроль экстремальных ситуаций сводится к проверке наглядного смысла решения при приближении параметров модели к нулю или бесконеч­ности.

Контроль граничных условий состоит в том, что проверяется соот­ветствие математической модели граничным условиям, вытекающим из смыс­ла задачи. При этом проверяется, действительно ли граничные условия поставлены и учтены при построении искомой функции и что эта функция на самом деле удовлетворяет таким условиям.

Контроль математической замкнутости сводится к проверке того, что математическая модель дает однозначное решение.

Контроль физического смысла сводится к проверке физического со­держания промежуточных соотношений, используемых при построении мате­матической модели.

Контроль устойчивости модели состоит в проверке того, что варь­ирование исходных данных в рамках имеющихся данных о реальном объекте не приведет к существенному изменению решения.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования «Уральский государственный университет им. »

Исторический факультет

Кафедра документационного и информационного обеспечения управления

Математические методы в научных исследованиях

Программа курса

Стандарт 350800 «Документоведение и документационное обеспечение управления»

Стандарт 020800 «Историко-архивоведение»

Екатеринбург

Утверждаю

Проректор

(подпись)

Программа дисциплины «Математические методы в научных исследованиях» составлена в соответствии с требованиями вузовского компонента к обязательному минимуму содержания и уровню подготовки:

дипломированного специалиста по специальности

Документоведение и документационное обеспечение управления (350800),

Историко-архивоведение(020800),

по циклу «Общие гуманитарные и социально-экономические дисциплины» государственного образовательного стандарта высшего профессионального образования.

Семестр III

По учебному плану специальности № 000– Документоведение и документационное обеспечение управления:

Общая трудоемкость дисциплины: 100 часов,

в том числе лекций 36 часа

По учебному плану специальности № 000– Историко – архивоведение

Общая трудоемкость дисциплины: 50 часов,

в том числе лекций 36 часа

Контрольные мероприятия :

Контрольные работы 2 чел/час

Составитель: , канд. ист. наук, доцент кафедры документационного и информационного обеспечения управления Уральского государственного университета


кафедры Документационного и информационного обеспечения управления

от 01.01.01 г. № 1.

Согласовано:

Зам. председателя

Гуманитарного совета

_________________

(подпись)

(С) Уральский государственный университет

(С) , 2006

ВВЕДЕНИЕ

Курс “Математические методы в социально-экономических исследованиях“ предназначен для ознакомления студентов с основными приемами и способами обработки количественной информации, разработанными статистикой. Его основная задача - расширить методический научный аппарат исследователей, научить применять в практической и научно-исследовательской деятельности помимо традиционных методов, основных на логическом анализе, математические методы , которые помогают количественно охарактеризовать исторические явления и факты.

В настоящее время математический аппарат и математические методы используются практически во всех областях науки. Это закономерный процесс, его часто называют - математизация науки. В философии математизация обычно понимается как применение математики в различных науках. Математические методы давно и прочно вошли в арсенал методов исследования ученых, используются для обобщения данных, выявления тенденций и закономерностей развития общественных явлений и процессов, типологии и моделирования.

Знание статистики необходимо, чтобы правильно охарактеризовать и проанализировать процессы, происходящие в экономике и обществе. Для этого необходимо владеть выборочным методом, сводкой и группировкой данных, уметь рассчитать средние и относительные величины , показатели вариации , коэффициенты корреляции. Элементом информационной культуры выступают навыки правильного оформления таблиц и построения графиков, которые представляют собой важный инструмент систематизации первичных социально-экономических данных и наглядного представления количественной информации. Для оценки временных изменений необходимо иметь представление о системе динамических показателей.

Использование методики проведения выборочного исследования позволяет изучить большие массивы информации, представленные массовыми источниками, экономить время и труд, получая при этом научно значимые результаты.

Математико-статистические методы занимают вспомогательные позиции, дополняя и обогащая традиционные методы социально-экономического анализа, их освоение является необходимой составной частью квалификации современного специалиста – документоведа, историка-архивиста.

В настоящее время математико-статистические методы активно применяются в маркетинговых, социологических исследованиях , при сборе оперативной управленческой информации, составлении отчетов и проведении анализа документопотоков.

Навыки количественного анализа необходимы для подготовки квалификационных работ, рефератов и других исследовательских проектов.

Опыт использования математических методов свидетельствует, что их использование должно осуществляться с соблюдением следующих принципов для получения достоверных и репрезентативных результатов:

1) определяющую роль играет общая методология и теория научного познания;

2) необходима четкая и правильная постановка исследовательской задачи;

3) отбор репрезентативных в количественном и качественном отношении социально-экономических данных;

4) корректность применения математических методов, т. е. они должны соответствовать исследовательской задаче и характеру обрабатываемых данных;

5) необходима содержательная интерпретация и анализ полученных результатов, а также обязательная дополнительная проверка полученных в результате математической обработки сведений.


Математические методы помогают усовершенствовать технологию научного исследования: повысить ее эффективность; они дают большую экономию времени, особенно при обработке больших массивов информации, позволяют выявить скрытую информацию, хранящуюся в источнике.

Помимо этого математические методы тесно связаны с таким направлением научно-информационной деятельности как создание исторических банков данных и архивов машиночитаемых данных. Нельзя игнорировать достижения эпохи, а информационные технологии становятся одним из важнейших факторов развития всех сфер общества.

ПРОГРАММА КУРСА

Тема 1. ВВЕДЕНИЕ. МАТЕМАТИЗАЦИЯ ИСТОРИЧЕСКОЙ НАУКИ

Цель и задачи курса. Объективная необходимость совершенствования исторических методов за счет привлечения приемов математики.

Математизация науки, основное содержание. Предпосылки математизации: естественнонаучные предпосылки; социально-технические предпосылки. Границы математизации науки. Уровни математизации для естественных, технических, экономических и гуманитарных наук . Основные закономерности математизации науки: невозможность полностью охватить средствами математики области исследования других наук; соответствие применяемых математических методов содержанию математизируемой науки. Возникновение и развитие новых прикладных математических дисциплин.

Математизация исторической науки. Основные этапы и их особенности. Предпосылки математизации исторической науки. Значение разработки статистических методов для развития исторического знания.

Социально-экономические исследования с использованием математических методов в дореволюционной и советской историографии 20-х годов (, и др.)

Математико-статистические методы в работах историков 60-90-х годов. Компьютеризация науки и распространение математических методов. Создание баз данных и перспективы развития информационного обеспечения исторических исследований. Важнейшие итоги применения методов математики в социально-экономических и историко-культурных исследованиях (, и др.).

Соотношение математических методов с другими методами исторического исследования: историко-сравнительным, историко-типологическим, структурным, системным, историко-генетическим методами. Основные методологические принципы применения математико-статистических методов в исторических исследованиях.

Тема 2 . СТАТИСТИЧЕСКИЕ ПОКАЗАТЕЛИ

Основные приемы и методы статистического изучения общественных явлений: статистическое наблюдение, достоверность статистических данных. Основные формы статистического наблюдения, цель наблюдения, объект и единица наблюдения. Статистический документ как исторический источник.

Статистические показатели (показатели объема, уровня и соотношения), его основные функции. Количественная и качественная сторона статистического показателя. Разновидности статистических показателей (объемные и качественные; индивидуальные и обобщающие; интервальные и моментные).

Основные требования, предъявляемые к расчету статистических показателей, обеспечивающие их достоверность.


Взаимосвязь статистических показателей. Система показателей. Обобщающие показатели.

Абсолютные величины, определение. Виды абсолютных статистических величин, их значение и способы получения. Абсолютные величины как непосредственный результат сводки данных статистического наблюдения.

Единицы измерения, их выбор в зависимости от сущности изучаемого явления. Натуральные, стоимостные и трудовые единицы измерения .

Относительные величины. Основное содержание относительного показателя , формы их выражения (коэффициент, процент, промилле, децимилле). Зависимость формы и содержания относительного показателя.

База сравнения, выбор базы при вычислении относительных величин. Основные принципы вычисления относительных показателей, обеспечение сопоставимости и достоверности абсолютных показателей (по территории, кругу объектов и т. д.).

Относительные величины структуры, динамики, сравнения, координации и интенсивности. Способы их вычисления.

Взаимосвязь абсолютных и относительных величин. Необходимость их комплексного применения.

Тема 3. ГРУППИРОВКА ДАННЫХ. ТАБЛИЦЫ.

Сводные показатели и группировка в исторических исследованиях. Задачи, решаемые данными методами в научном исследовании: систематизация, обобщение, анализ, удобство восприятия. Статистическая совокупность, единицы наблюдения.

Задачи и основное содержание сводки. Сводка - второй этап статистического исследования. Разновидности сводных показателей (простая, вспомогательная). Основные этапы расчета сводных показателей.

Группировка - основной метод обработки количественных данных. Задачи группировки и их значение в научном исследовании. Виды группировок. Роль группировок в анализе общественных явлений и процессов.

Основные этапы построения группировки: определение изучаемой совокупности; выбор группировочного признака(количественные и качественные признаки; альтернативные и неальтернативные; факторные и результативные); распределение совокупности по группам в зависимости от вида группировки (определение количества групп и величины интервалов), шкалы измерения признаков (номинальная, порядковая, интервальная); выбор формы представления сгруппированных данных (текст, таблица, график).

Типологическая группировка, определение, основные задачи, принципы построения. Роль типологической группировки в исследовании социально-экономических типов.

Структурная группировка, определение, основные задачи, принципы построения. Роль структурной группировки в изучении структуры общественных явлений

Аналитическая (факторная) группировка, определение, основные задачи, принципы построения, Роль аналитической группировки в анализе взаимосвязей общественных явлений. Необходимость комплексного использования и изучения группировок для анализа общественных явлений.

Общие требования к построению и оформлению таблиц. Разработка макета таблицы. Реквизиты таблицы (нумерация, заголовок, наименования граф и строк, условные обозначения, обозначение чисел). Методика заполнения сведений таблицы.

Тема 4 . ГРАФИЧЕСКИЕ МЕТОДЫ АНАЛИЗА СОЦИАЛЬНО-ЭКОНОМИЧЕСКОЙ

ИНФОРМАЦИИ

Роль графиков и графического изображения в научном исследовании. Задачи графических методов: обеспечение наглядности восприятия количественных данных; аналитические задачи; характеристика свойств признаков.

Статистический график, определение. Основные элементы графика: поле графика, графический образ, пространственные ориентиры, масштабные ориентиры, экспликация графика.

Виды статистических графиков: линейная диаграмма, особенности ее построения, графические образы; столбиковая диаграмма (гистограмма), определение правила построения гистограмм в случае с равными и неравными интервалами; круговая диаграмма, определение, способы построения.

Полигон распределения признака. Нормальное распределение признака и его графическое изображение. Особенности распределения признаков, характеризующих социальные явления: скошенное, ассиметричное, умеренно ассиметричное распределение.

Линейная зависимость между признаками, особенности графического изображения линейной зависимости. Особенности линейной зависимости при характеристике социальных явлений и процессов.

Понятие тренда динамического ряда. Выявление тренда с помощью графических методов.

Тема 5. СРЕДНИЕ ВЕЛИЧИНЫ

Средние величины в научном исследовании и статистике, их сущность и определение. Основные свойства средних величин как обобщающей характеристики. Взаимосвязь метода средних величин и группировок. Общие и групповые средние. Условия типичности средних. Основные исследовательские задачи, которые решают средние величины.

Способы вычисления средних. Средняя арифметическая - простая, взвешенная. Основные свойства средней арифметической. Особенности расчета средней по дискретному и интервальному рядам распределения. Зависимость способа вычисления средней арифметической в зависимости от характера исходных данных. Особенности интерпретации среднего арифметического показателя.

Медиана - средний показатель структуры совокупности, определение, основные свойства. Определение медианного показателя для ранжированного количественного ряда. Вычисление медианы для показателя, представленного интервальной группировкой.

Мода - средний показатель структуры совокупности, основные свойства и содержание. Определение моды для дискретного и интервального рядов. Особенности исторической интерпретации моды.

Взаимосвязь среднеарифметического показателя, медианы и моды, необходимость их комплексного использование, проверка типичности средней арифметической.

Тема 6. ПОКАЗАТЕЛИ ВАРИАЦИИ

Изучение колеблемости (вариативности) значений признака. Основное содержание мер рассеяния признака, и их использование научно-исследовательской деятельности.

Абсолютные и средние показатели вариации. Вариационный размах, основное содержание, способы вычисления. Среднее линейное отклонение. Среднее квадратичное отклонение, основное содержание, способы расчета для дискретного и интервального количественного ряда. Понятие дисперсии признака.

Относительные показатели вариации. Коэффициент осцилляции, основное содержание, способы расчета. Коэффициент вариации, основное содержание способы расчета. Значение и специфика применения каждого показателя вариации при изучении социально-экономических признаков и явлений.

Тема 7.

Изучение изменений общественных явлений во времени - одна из важнейших задач социально-экономического анализа.

Понятие динамического ряда. Моментные и интервальные динамические ряды. Требования, предъявляемые к построению динамических рядов. Сопоставимость в рядах динамики.

Показатели изменения рядов динамики. Основное содержание показателей рядов динамики. Уровень ряда. Базисные и цепные показатели. Абсолютный прирост уровня динамики, базисный и цепной абсолютные приросты, способы вычисления.

Показатели темпа роста. Базисный и цепной темпы роста. Особенности их интерпретации. Показатели темпа прироста, основное содержание, способы вычисления базисных и цепных темпов прироста.

Средний уровень ряда динамики, основное содержание. Приемы вычисления средней арифметической для моментных рядов с равными и неравными интервалами и для интервального ряда с равными интервалами. Средний абсолютный прирост. Средний темп роста. Средний темп прироста.

Комплексный анализ взаимосвязанных рядов динамики. Выявление общей тенденции развития - тренда: способ скользящей средней, укрупнение интервалов, аналитические приемы обработки рядов динамики. Понятие об интерполяции и экстраполяции рядов динамики.

Тема 8.

Необходимость выявления и объяснения взаимосвязей для изучения социально-экономических явлений. Виды и формы взаимосвязей, изучаемых статистическими методами. Понятие функциональной и корреляционной связи. Основное содержание корреляционного метода и задачи решаемые с его помощью в научном исследовании. Основные этапы корреляционного анализа. Особенности интерпретации коэффициентов корреляции.

Коэффициент линейной корреляции, свойства признаков, для которых может рассчитываться коэффициент линейной корреляции. Способы вычисления коэффициента линейной корреляции для сгруппированных и несгруппированных данных. Коэффициент регрессии , основное содержание, способы расчета, особенности интерпретации. Коэффициент детерминации и его содержательная интерпретация.

Границы применения основных разновидностей корреляционных коэффициентов в зависимости от содержания и формы представления исходных данных. Коэффициент корреляционного отношения. Коэффициент ранговой корреляции. Коэффициенты ассоциации и сопряженности для альтернативных качественных признаков. Приближенные методы определения взаимосвязи между признаками: коэффициент Фехнера. Коэффициент автокорреляции. Информационные коэффициенты.

Способы упорядочения коэффициентов корреляции: корреляционная матрица, метод плеяд.

Методы многомерного статистического анализа: факторный анализ , компонентный, регрессионный анализ, кластерный анализ. Перспективы моделирования исторических процессов для изучения социальных явлений.

Тема 9. ВЫБОРОЧНОЕ ИССЛЕДОВАНИЕ

Причины и условия проведения выборочного исследования. Необходимость использования историками методов частичного изучения социальный объектов.

Основные типы частичного обследования: монографический, метод основного массива, выборочное исследование.

Определение выборочного метода, основные свойства выборки. Репрезентативность выборки и ошибка выборки.

Этапы проведения выборочного исследования. Определение объема выборки, основные приемы и способы нахождения выборочного объема (математические методы, таблица больших чисел). Практика определения объема выборки в статистике и социологии.

Способы формирования выборочной совокупности: собственно-случайная выборка, механическая выборка, типическая и гнездовая выборка. Методика организации выборочных переписей населения, бюджетных обследований семей рабочих и крестьян.

Методика доказательства репрезентативности выборки. Случайные, систематические ошибки выборки и ошибки наблюдения. Роль традиционных методов в определении достоверности результатов выборки. Математические методы вычисления ошибки выборки. Зависимость ошибки от объема и вида выборки.

Особенности интерпретации результатов выборки и распространения показателей выборочной совокупности на генеральную совокупность.

Естественная выборка, основное содержание, особенности формирования. Проблема репрезентативности естественной выборки. Основные этапы доказательства репрезентативности естественной выборки: применение традиционных и формальных методов. Метод критерия знаков, метод серий - как способы доказательства свойства случайности выборки.

Понятие малой выборки. Основные принципы использования ее в научном исследовании

Тема 11. МЕТОДЫ ФОРМАЛИЗАЦИИ СВЕДЕНИЙ МАССОВЫХ ИСТОЧНИКОВ

Необходимость формализации сведений массовых источников для получения скрытой информации. Проблема измерения информации. Количественные и качественные признаки. Шкалы измерения количественных и качественных признаков: номинальная, порядковая, интервальная. Основные этапы измерения информации источника.

Виды массовых источников, особенности их измерения. Методика построение унифицированной анкеты по материалам структурированного, слабоструктурированного исторического источника.

Особенности измерения информации неструктурированного нарративного источника. Контент-анализ, его содержание и перспективы использования. Виды контент-анализа. Контент-анализ в социологических и исторических исследованиях.

Взаимосвязь математико-статистических методов обработки информации и методов формализации сведений источника. Компьютеризация исследований. Базы и банки данных. Технология баз данных в социально-экономических исследованиях.

Задания для самостоятельной работы

Для закрепления лекционного материала студентам предлагаются задания для самостоятельной работы по следующим темам курса:

Относительные показатели Средние показатели Группировочный метод Графические методы Показатели динамики

Выполнение заданий контролируется преподавателем и является обязательным условием допуска к зачету.

Примерный перечень вопросов к зачету

1. Математизация науки, сущность, предпосылки, уровни математизации

2. Основные этапы и особенности математизация исторической науки

3. Предпосылки использования математических методов в исторических исследованиях

4. Статистический показатель, сущность, функции, разновидности

3. Методологические принципы применения статистических показателей в исторических исследованиях

6. Абсолютные величины

7. Относительные величины, содержание, формы выражения, основные принципы вычисления.

8. Виды относительных величин

9. Задачи и основное содержание сводки данных

10. Группировка, основное содержание и задачи в исследовании

11. Основные этапы построения группировки

12. Понятие группировочного признака и его градаций

13. Виды группировки

14. Правила построения и оформления таблиц

15. Динамический ряд, требования, предъявляемые к построению динамического ряда

16. Статистический график, определение, структура, решаемые задачи

17. Виды статистических графиков

18. Полигон распределение признака. Нормальное распределение признака.

19. Линейная зависимость между признаками, методы определения линейности.

20. Понятие тренда динамического ряда, способы его определения

21. Средние величины в научном исследовании, их сущность и основные свойства. Условия типичности средних.

22. Виды средних показателей совокупности. Взаимосвязь средних показателей.

23. Статистические показатели динамики, общая характеристика, виды

24. Абсолютные показатели изменения рядов динамики

25. Относительные показатели изменения рядов динамики (темпы роста, темпы прироста)

26. Средние показатели динамического ряда

27. Показатели вариации, основное содержание и решаемые задачи, виды

28. Виды несплошного наблюдения

29. Выборочное исследование, основное содержание и решаемые задачи

30. Выборочная и генеральная совокупность, основные свойства выборки

31. Этапы проведения выборочного исследования, общая характеристика

32. Определение объема выборки

33. Способы формирования выборочной совокупности

34. Ошибка выборки и методы ее определения

35. Репрезентативность выборки, факторы влияющие на репрезентативность

36. Естественная выборка, проблема репрезентативности естественной выборки

37. Основные этапы доказательства репрезентативности естественной выборки

38. Корреляционный метод, сущность, основные задачи. Особенности интерпретации коэффициентов корреляции

39. Статистическое наблюдение как метод сбора информации, основные виды статистического наблюдения.

40. Виды корреляционных коэффициентов, общая характеристика

41. Коэффициент линейной корреляции

42. Коэффициент автокорреляции

43. Методы формализации исторических источников: метод унифицированной анкеты

44. Методы формализации исторических источников: метод контент-анализа

III. Распределение часов курса по темам и видам работ:

по учебному плану специальности (№ 000– документоведение и документационное обеспечение управления)

Наименование

разделов и тем

Аудиторные занятия

Самостоятельная работа

в том числе

Введение. Математизация науки

Статистические показатели

Группировка данных. Таблицы

Средние величины

Показатели вариации

Статистические показатели динамики

Методы многомерного анализа. Коэффициенты корреляции

Выборочное исследование

Методы формализации информации

Распределение часов курса по темам и видам работ

по учебному плану специальности № 000– историко – архивоведение

Наименование

разделов и тем

Аудиторные занятия

Самостоятельная работа

в том числе

Практические (семинары, лабораторные работы)

Введение. Математизация науки

Статистические показатели

Группировка данных. Таблицы

Графические методы анализа социально-экономической информации

Средние величины

Показатели вариации

Статистические показатели динамики

Методы многомерного анализа. Коэффициенты корреляции

Выборочное исследование

Методы формализации информации

IV. Форма итогового контроля - зачет

V. Учебно-методическое обеспечение курса

Славко методы в исторических исследованиях. Учебник. Екатеринбург, 1995

Мазур методы в исторических исследованиях. Методические рекомендации. Екатеринбург, 1998

Дополнительная литература

Бородкин статистический анализ в исторических исследованиях. М.,1986

Бородкин информатика: этапы развития // Новая и новейшая история. 1996. № 1.

Тихонов для гуманитариев. М., 1997

Гарскова и банки данных в исторических исследованиях. Геттинген, 1994

Герчук методы в статистике. М., 1968

Дружинин метод и его применение в социально-экономических исследованиях. М.,1970

Методы статистических обследований. М., 1985

Средние величины. М., 1970

Юзбашев теория статистики. М., 1995.

Румянцев теория статистики. М., 1998

Шмойлова изучение основной тенденции и взаимосвязи в рядах динамики. Томск, 1985

Выборочный метод в переписях и обследованиях /пер. с англ. . М., 1976

Историческая информатика. М.,1996.

Ковальченко исторического исследования. М.,1987

Компьютер в экономической истории. Барнаул, 1997

Круг идей: модели и технологии исторической информатики. М., 1996

Круг идей: традиции и тенденции исторической информатики. М., 1997

Круг идей: макро - и микро подходы в исторической информатике. М., 1998

Круг идей: историческая информатика на пороге XXI века. Чебоксары, 1999

Круг идей: историческая информатика в информационном обществе. М., 2001

Общая теория статистики: Учебник /ред. и. М., 1994.

Практикум по теории статистики: Учеб. пособ. М., 2000

Елисеева статистики. М., 1990

Славко -статистические методы в исторических и исследованиях М.,1981

Славко методы в изучении истории советского рабочего класса. М.,1991

Статистический словарь / под ред. . М., 1989

Теория статистики: Учебник / ред. , М., 2000

Урсул общества. Введение в социальную информатику. М., 1990

Выборочный метод / пер. с нем. . М., 1978

Использование математических методов в сфере управления - важнейшее направление совершенствования систем управления. Математические методы ускоряют проведение экономического анализа, способствуют более полному учету влияния факторов на результаты деятельности, повышению точности вычислений. Применение математических методов требует:

  • системного подхода к исследованию заданного объекта, учета взаимосвязей и отношений с другими объектами (предприятиями, фирмами);
  • разработки математических моделей, отражающих количественные показатели системной деятельности работников организации, процессов, происходящих в сложных системах, какими являются предприятия;
  • совершенствования системы информационного обеспечения управления предприятием с использованием электронно- вычислительной техники.

Решение задач экономического анализа математическими методами возможно, если они сформулированы математически, т.е. реальные экономические взаимосвязи и зависимости выражены с применением математического анализа. Это вызывает необходимость разработки математических моделей.

В управленческой практике для решения экономических задач прибегают к различным методам. Например, в сетевом планировании и управлении используются различные математические методы, а в значение термина «исследование операций» многие авторы вкладывают различное содержание.

Методы элементарной математики используются в традиционных экономических расчетах при обосновании потребностей в ресурсах, разработке плана, проектов и т.п.

Классические методы математического анализа используются самостоятельно (дифференцирование и интегрирование) и в рамках других методов (математической статистики, математического программирования).

Статистические методы - основное средство исследования массовых повторяющихся явлений. Они применяются при возможности представления изменения анализируемых показателей как случайного процесса. Если связь между анализируемыми характеристиками не детерминированная, а стохастическая, то статистические и вероятностные методы становятся практически единственным инструментом исследования. В экономическом анализе наиболее известны методы множественного и парного корреляционного анализа.

Для изучения одновременных статистических совокупностей служат закон распределения, вариационный ряд, выборочный метод. Для многомерных статистических совокупностей применяются корреляции, регрессии, дисперсионный, ковариационный, спектральный, компонентный, факторный виды анализа.

Экономические методы базируются на синтезе трех областей знаний: экономики, математики и статистики. Основа эконометрии - экономическая модель, т.е. схематическое представление экономического явления или процессов, отражение их характерных черт с помощью научной абстракции. Наиболее распространен метод анализа экономики «затраты - выпуск». Метод представляет матричные (балансовые) модели, построенные по шахматной схеме и наглядно иллюстрирующие взаимосвязь затрат и результатов производства.

Методы математического программирования - основное средство решения задач оптимизации производственно-хозяйственной деятельности. По сути, методы - средства плановых расчетов, и они позволяют оценивать напряженность плановых заданий, дефицитность результатов, определять лимитирующие виды сырья, группы оборудования.

Под исследованием операций понимаются разработки методов целенаправленных действий (операций), количественная оценка решений и выбор наилучшего из них. Цель исследования операций - сочетание структурных взаимосвязанных элементов системы, в наибольшей степени обеспечивающее лучший экономический показатель.

Теория игр как раздел исследования операций представляет собой теорию математических моделей принятия оптимальных решений в условиях неопределенности или конфликта нескольких сторон, имеющих различные интересы.

Теория массового обслуживания на основе теории вероятности исследует математические методы количественной оценки процессов массового обслуживания. Особенность всех задач, связанных с массовым обслуживанием, - случайный характер исследуемых явлений. Количество требований на обслуживание и временные интервалы между их поступлениями имеют случайный характер, однако в совокупности подчиняются статистическим закономерностям, количественное изучение которых и есть предмет теории массового обслуживания.

Экономическая кибернетика анализирует экономические явления и процессы как сложные системы с точки зрения законов управления и движения в них информации. Методы моделирования и системного анализа наиболее разработаны именно в этой области.

Применение математических методов в экономическом анализе базируется на методологии экономико-математического моделирования хозяйственных процессов и научно обоснованной классификации методов и задач анализа. Все экономико-математические методы (задачи) подразделяются на две группы: оптимизационные решения по заданному критерию и неоптимизационные (решения без критерия оптимальности).

По признаку получения точного решения все математические методы делятся на точные (по критерию или без него получают единственное решение) и приближенные (на основе стохастической информации).

К оптимальным точным можно отнести методы теории оптимальных процессов, некоторые методы математического программирования и методы исследования операций, к оптимизационным приближенным - часть методов математического программирования, исследования операций, экономической кибернетики, эвристические.

К неоптимизационным точным принадлежат методы элементарной математики и классические методы математического анализа, экономические методы, к неоптимизационным приближенным - метод статистических испытаний и другие методы математической статистики.

Особенно часто применяются математические модели очередей и управления запасами. Например, теория очередей опирается на разработанную учеными А.Н. Колмогоровым и А.Л. Ханчиным теорию массового обслуживания.

Теория массового обслуживания. Эта теория позволяет изучать системы, предназначенные для обслуживания массового потока требований случайного характера. Случайными могут быть как моменты появления требований, так и затраты времени на их обслуживание. Целью методов теории является отыскание разумной организации обслуживания, обеспечивающей заданное его качество, определение оптимальных (с точки зрения принятого критерия) норм дежурного обслуживания, надобность в котором возникает непланомерно, нерегулярно.

С использованием метода математического моделирования можно определить, например, оптимальное количество автоматически действующих машин, которое может обслуживаться одним рабочим или бригадой рабочих, и т.п.

Типичным примером объектов теории массового обслуживания могут служить автоматические телефонные станции - АТС. На АТС случайным образом поступают «требования» - вызовы абонентов, а «обслуживание» состоит в соединении абонентов с другими абонентами, поддержание связи во время разговора и т.д. Задачи теории, сформулированные математически, обычно сводятся к изучению специального типа случайных процессов.

Исходя из данных вероятностных характеристик поступающего потока вызовов и продолжительности обслуживания и учитывая схему системы обслуживания, теория определяет соответствующие характеристики качества обслуживания (вероятность отказа, среднее время ожидания начала обслуживания т.п.).

Математическими моделями многочисленных задач техникоэкономического содержания являются также задачи линейного программирования. Линейное программирование - это дисциплина, посвященная теории и методам решения задач об экстремумах линейных функций на множествах, задаваемых системами линейных равенств и неравенств.

Задача планирования работы предприятия. Для производства однородных изделий необходимо затратить различные производственные факторы - сырье, рабочую силу, станочный парк, топливо, транспорт и т.д. Обычно имеется несколько отработанных технологических способов производства, причем в этих способах затраты производственных факторов в единицу времени для выпуска изделий различны.

Количество израсходованных производственных факторов и количество изготовляемых изделий зависит от того, сколько времени предприятие будет работать по тому или иному технологическому способу.

Ставится задача рационального распределения времени работы предприятия по различным технологическим способам, т.е. такого, при котором будет произведено максимальное количество изделий при заданных ограниченных затратах каждого производственного фактора.

На основе метода математического моделирования в операционных исследованиях решаются также многие важные задачи, требующие специфических методов решения. К их числу относятся задачи:

  • надежности изделий;
  • замены оборудования;
  • распределения ресурсов;
  • ценообразования;
  • распределения ресурсов;
  • а также теория расписаний (так называемая теория календарного планирования).

Вопрос распределения ресурсов является одним из основных в процессе управления производством. Для решения этого вопроса в операционных исследованиях пользуются построением линейной статистической модели.

Задача ценообразования. Для предприятия вопрос образования цены на продукцию играет немаловажную роль. От того, как проводится ценообразование на предприятии, зависит его прибыль. Кроме того, в существующих сейчас условиях рыночной экономики цена стала существенным фактором в конкурентной борьбе.

Теория сетевого планирования. Сетевое планирование и управление являются системой планирования управления разработкой крупных хозяйственных комплексов, конструкторской и технологической подготовкой производства новых видов.

Несколько лет назад, когда автор этой книги работал консультантом по вопросам математической статистики в небольшой медицинской научно-исследовательской группе, разговоры о возможности проложить математическую тропинку через густые дебри экологических факторов часто заканчивались довольно скептическим покачиванием головой и утверждением, что «медицина - это все-таки искусство». Отчасти это, конечно, верно в том смысле, что интуиция и воображение для врача действительно необходимы. В то же время большинство больных и потенциальных больных, несомненно, надеются на непрерывное развитие и расширение научных аспектов медицины. А наука означает применение математики.

Существенно важен вопрос о том, в каких областях применимы математические методы. В разд. 1.1 мы уже отмечали, что потребность в математическом описании появляется при любой попытке вести обсуждение в точных понятиях и что это касается даже таких сложных областей, как искусство и этика. В настоящем разделе мы несколько конкретнее рассмотрим области применения математики в биологии и медицине.

Хорошо известно, что один из подходов к описанию картины природы - это построение иерархии уровней организации, изучаемых различными науками; по уровню абстракции, свойственному каждой из них, эти науки можно расположить в такой последовательности: физика, химия, биохимия, физиология, психология, социология. Мы начинаем с основных материальных элементов реального мира, т. е. с субатомного уровня, и заканчиваем необычайно разносторонними проявлениями духовной жизни человеческого общества. В этой последовательности уровней организация и сложность непрерывно повышаются. На каждом уровне действуют свои собственные законы, и поэтому их можно изучать до некоторой степени независимо друг от друга. Однако любой из них нерасторжимо связан с закономерностями, действующими на более низких уровнях. Так, законы физики и химии отчасти распространяются и на психологию, хотя понятия и законы последней выходят за пределы физических и химическпх законов.

Проблемы, касающиеся организации и деятельности больниц, следует отнести к более высокому уровню абстракции, чем, скажем, физиологию и патологию человека. Но хотя в определенной степени логическое содержание этого более высокого уровня независимо от более низкого, вопросы физиологии и патологии неизбежно должны учитываться при решении любой проблемы, касающейся организации больничных служб. Мы не собираемся углубляться здесь в эти философские рассуждения или обсуждать отдельные их детали, а хотим лишь подчеркнуть, что описанная последовательность уровней приближенно соответствует порядку возрастания трудностей при использовании научных методов и проведении математических исследований.

Как мы уже отмечали, прикладная математика добилась крупных и бесспорных успехов в области физики и химии, однако в данной книге мы не будем касаться этих вопросов. В разд. 1.2 было показано, что математические описания, связанные с биологическими формами, охватывают широкий круг вопросов и могут быть проведены достаточно точно. В разд. 1.3 мы познакомились с динамическими моделями развития и коснулись проблем, связанных со случайными колебаниями численности популяций. Изложение этих вопросов требовало достаточной степени абстракции, однако именно использование упрощающих допущений позволило нам получить некоторое представление о законах, регулирующих рост популяций. Было отмечено, что при рассмотрении такого рода проблем неизбежно приходится сталкиваться с фактором статистической изменчивости, подробное обсуждение которого переносится в гл. 2.

При переходе на более высокие уровни абстракции мы сталкиваемся не только с более сложными вопросами, но и с возрастающей степенью изменчивости, по большей части непредсказуемой. Например, полная картина конкуренции между несколькими видами, обитающими в определенной среде, включает огромное множество факторов. В области научных экологических описаний, выполненных главным образом в словесной форме, достигнуты значительные успехи, однако разработка математических моделей находится здесь еще на самом элементарном уровне. Другим примером может служить область медицинской диагностики. Для постановки диагноза врач совместно с другими специалистами часто бывает вынужден учитывать самые разнообразные факты, опираясь отчасти на свой личный опыт, а отчасти на материалы, приводимые в многочисленных медицинских руководствах и журналах. Общее количество информации увеличивается со все возрастающей интенсивностью, и есть такие болезни, о которых уже столько написано, что один человек не в состоянии в точности изучить, оценить, объяснить и использовать всю имеющуюся информацию при постановке диагноза в каждом конкретном случае.

Разумеется, хороший диагност, используя свой большой опыт и интуицию, может отобрать необходимую часть важных данных и дать достаточно точное заключение. Однако, как это ни парадоксально звучит, по мере накопления знаний положение ухудшается.

Именно в такого рода ситуациях, когда разум одного человека не способен справиться со сложностями стоящих перед ним задач и описать их решение даже в общей словесной форме, специалисты в области так называемых неточных наук (включая, разумеется, биологию и медицину) часто утверждают, что математический анализ несовершенен, неуместен, приводит к ошибочным заключениям или невозможен, и поэтому его лучше избегать. Это возражение содержит рациональное зерно в том смысле, что современная математика, возможно, еще недостаточно совершенна; однако пройдет время, и мы увидим, что справедливо как раз обратное. В тех случаях, когда задача содержит большое число существенных взаимозависимых факторов, каждый из которых в значительной мере подвержен естественной изменчивости, только с помощью правильно выбранного статистического метода можно точно описать, объяснить и углубленно исследовать всю совокупность взаимосвязанных результатов измерений. Если число факторов или важных результатов настолько велико, что человеческий разум не в состоянии их обработать даже при введении некоторых статистических упрощений, то обработка данных может быть произведена на электронной вычислительной машине. Использование статистических методов и вычислительной техники рассматривается в гл. 2 и 5 соответственно.

Основная причина недоверия к математическим и вычислительным методам, по-видимому, состоит в следующем. Математическая модель некоторого биологического явления будет приемлемой для биолога только в том случае, если выраженная в словесной форме информация об этом явлении, которой он располагает, достаточно полна для того, чтобы можно было судить об адекватности модели. Ясно, что получение такой информации представляет собой первый и наиболее важный этап биологического исследования и что на этом этапе математика играет второстепенную роль. Естественно, возникает мысль, что по мере того, как вопросы становятся более трудными и сложными, математика приобретает все меньшее и меньшее значение. Однако не всегда учитывается то обстоятельство, что, достигнув достаточной степени сложности, математика развивается далее по своим собственным законам и дает биологу понятия и образ мышления, которых у него раньше не было. Будем надеяться, что эта книга хотя бы в некоторой степени проиллюстрирует справедливость этого утверждения.

До сих пор мы имели в виду главным образом те биологические и медицинские исследования, которые требуют более высокого уровня абстракции, чем физика и химия, но тесно связаны с этими последними. Далее мы перейдем к проблемам, связанным с поведением животных и психологией человека, т. е. к использованию прикладных наук для достижения некоторых более общих целей. Эту область довольно расплывчато называют исследованием операцийи более детально она рассматривается в гл. 4. Пока мы лишь отметим, что речь будет идти о применении научных методов при решении административных и организационных задач, особенно тех, которые непосредственно или косвенно связаны с биологией и медициной. Лесоводство, животноводство, общие вопросы сельскохозяйственного производства, проектирование больниц и организация медицинского обслуживания - таковы лишь немногие вопросы, относящиеся к этой категории.

Разумеется, не все задачи административного управления можно решить на научной основе, используя методы исследования операций. Однако применение этих методов там, где оно возможно (а они применимы ко многим задачам такого рода), имеет большие преимущества, так как позволяет расширить область точных исследований и сократить область неопределенных словесных рассуждений. Благодаря этому интуиция и здравый смысл человека могут быть направлены на решение тех вопросов, где невозможно применение шаблонных методов. Еще более сложны вопросы, к которым примешиваются какие-либо этические соображения. Но иногда математический анализ может помочь даже и в этих случаях. Например, в медицине часто возникают сложные проблемы, связанные с применением лекарственных препаратов, которые еще находятся на стадии испытания. Морально врач обязан предложить своему больному наилучший из существующих препаратов, но фактически он не может сделать выбор, пока испытание не будет закончено. В этих случаях применение правильно спланированных последовательностных статистических испытаний позволяет сократить время, требуемое для получения окончательных результатов. Этические проблемы при этом не снимаются, однако такой математический подход несколько облегчает их решение. О последовательностных методах более подробно говорится в разд. 2.3.

Основное положение настоящего раздела состоит в том, что математические методы применимы к самому широкому кругу вопросов - от физики элементарных частиц до моральных проблем. Удобно (хотя вовсе не обязательно) рассматривать некую иерархию уровней. По мере перехода на более абстрактные уровни математические методы оказываются менее разработанными и применять их становится все труднее.

Тем не менее при правильном применении математический подход не отличается существенно от подхода, основанного просто на здравом смысле. Математические методы просто более точны и в них используются более четкие формулировки и более широкий набор понятий, но в конечном счете они должны быть совместимы с обычными словесными рассуждениями, хотя, вероятно, и идут дальше их.

Использование математических методов в исследованиях. Математический аппарат для построения математических моделей.

На этапе выбора типа математической модели при помощи анализа данных поискового эксперимента устанавливаются: линœейность или нелинœейность, динамичность или статичность, стационарность или нестационарность, а также степень детерминированности исследуемого объекта или процесса.

Линœейность устанавливается по характеру статической характеристики исследуемого объекта. Под статической характеристикой объекта принято понимать связь между величиной внешнего воздействия на объект и максимальной величиной его реакции на внешнее воздействие. Под выходной характеристикой системы принято понимать изменение выходного сигнала системы во времени.

При выборе типа модели вероятностного объекта важно установление его стационарности. Обычно о стационарности или нестационарности вероятностных объектов судят по изменению во времени параметров законов распределœения случайных величин. Чаще всœего для этого используют среднее арифметическое случайной величины и среднее квадратическое отклонение случайных величин среднего арифметического и среднего квадратического отклонения во времени.

Как видно из схемы (рис.), выбор математического аппарата не является однозначным и жестким.

Рис. Математический аппарат для построения математической модели

В непрерывных объектах всœе сигналы представляют собой непрерывные функции времени. В дискретных объектах всœе сигналы квантуются по времени и амплитуде.

Установление непрерывности объекта позволяет использовать для его моделирования дифференциальные уравнения. В свою очередь, дискретность объекта предопределяет использование для математического моделирования аппарата теории автоматов.

Результаты поискового эксперимента и априорный информационный массив позволяют установить схему взаимодействия объекта с внешней средой по соотношению входных и выходных величин. В принципе возможно установление четырех схем взаимодействия:

одномерно-одномерная схема - на объект воздействует только один фактор, а его поведение рассматривается по одному показателю (один выходной сигнал);

одномерно-многомерная схема - на объект воздействует один фактор, а его поведение оценивается по нескольким показателям;

многомерно-одномерная схема - на объект воздействует несколько факторов, а его поведение оценивается по одному показателю;

многомерно-многомерная схема - на объект воздействует множество факторов и его поведение оценивается по множеству показателœей.

Выбор вида модели динамического объекта сводится к составлению дифференциальных уравнений. Модель динамического объекта может быть построена и в классе алгебраических функций. При этом такой подход является ограниченным, так как не позволяет в математическом описании учесть влияния входных воздействий на динамику выхода без перестройки самих алгебраических функций.

По этой причине по полноте модели отдается предпочтение математическим моделям, построенным в классе дифференциальных уравнений.

В случае если интересующие исследователя переменные являются только функциями времени, то для моделирования используются обыкновенные дифференциальные уравнения. В случае если же эти переменные являются также функциями пространственных координат, то для описания таких объектов недостаточно обыкновенных и следует пользоваться более сложными дифференциальными уравнениям в частных производных.