Цитогенетический метод позволяет изучить. Медицинская биология. Показания для исследования кариотипа пробанда

Цитогенетический метод позволяет изучить. Медицинская биология. Показания для исследования кариотипа
пробанда

Цитогенетические исследования - это совокупность методов исследования связи между явлением наследственности и строением клеток (особенно структур клеточного ядра). Цитогенетические исследования играют важную роль в медико-биологических работах, так как с их помощью выясняют генетические особенности, изменчивость (см.), происхождение и эволюцию живых существ.

Объектом цитогенетических исследований служат в первую очередь (см.) человека, животных и растений, имеющие специфические для каждого вида свойства (количество, размеры, особенности строения) и образующие характерный для данного организма кариотип. Поэтому методы цитогенетических исследований используются при построении естественных классификаций живых организмов.

В цитогенетических исследованиях уделяют особое внимание полиплоидии - явлению, связанному с кратным увеличением числа хромосом, сопровождающимся появлением целого ряда новых свойств (увеличение общих размеров, вкусовых качеств фруктов и овощей, жизнестойкости у растений и т. д.). Разработка проблемы полиплоидии имеет практическое значение в , в селекции растений и животных.

С помощью цитогенетических исследований обнаруживают изменения в хромосомах, передающиеся потомству и определенным образом влияющие на признаки организма. Изучают вредные хромосомные перестройки, утрату, выпадение или добавление отдельных хромосом или участков хромосом. Они позволяют выявить участие наследственного фактора в возникновении ряда заболеваний человека (см. Наследственные болезни), в том числе нарушений развития, предрасположенность к злокачественным новообразованиям и т. д. Цитогенетические исследования привели к правильному пониманию природы .

С помощью цитогенетических исследований установлено, например, что в ядрах клеток различных тканей и органов, но только у самок, присутствуют интенсивно окрашиваемые специальными красителями образования, так называемые тельца Барра или (см.). Оказалось, что половой хроматин встречается у многих животных и у человека. Открытие полового хроматина позволило определять человека на клеточном уровне (это имеет особое значение для судебной медицины), диагностировать пол на ранних стадиях беременности и решать ряд других вопросов медицинской практики.

См. также Генетика, Наследственность.

Цитогенетические исследования - микроскопическое изучение особых структур клетки, обусловливающих процессы наследования и развития.

Цитогенетические исследования получают все более широкое применение в клинической медицине. Наиболее простым, быстрым и доступным методом цитогенетического анализа является исследование полового хроматина.

Половой хроматин представляет собой хроматиновое тельце, которое отсутствует у особей мужского пола, а у особей женского пола прилежит к ядерной оболочке.

Таким образом, это тельце может служить цитологическим признаком пола, в связи с чем оно и получило название половой хроматин.

Размеры телец полового хроматина у человека колеблются от 0,7 до 1,2 мк, форма их может варьировать (рис. 1 - 3). У женщин половой хроматин определяется в среднем в 40% ядер (рис. 4). Он образуется одной из Х-хромосом женского кариотипа, находящейся в неактивном, спирализованном состоянии. Половой хроматин можно определить в клетках слизистой оболочки полости рта, влагалища и мочеиспускательного канала, а также в клетках крови, биопсированной кожи, культивируемой ткани взрослого, в эмбриональной ткани, нервных клетках.

Наиболее простая и удобная методика определения полового хроматина в клетках слизистой оболочки полости рта предложена Тири (Н. Thiries) и усовершенствована Сандерсоном (S. Sanderson). Для исследования берут соскоб со слизистой оболочки щек. Материал переносят на предметное стекло, высушивают на воздухе и в течение 10 мин. фиксируют в метиловом спирте. Окраску производят каплей свежефильтрованного ацетоорсеина (1 г синтетического орсеина растворяют в 45 мл ледяной уксусной кислоты, подогревают до кипения и после охлаждения фильтруют, к 45 мл профильтрованного раствора добавляют 55 мл дистиллированной воды и эту смесь фильтруют повторно). При микроскопировании иммерсионным объективом подсчитывают количество хроматинположительных ядер на 100 клеток.

Исследование полового хроматина применяют для цитологического определения пола, быстрой и ранней диагностики заболеваний, связанных с аберрациями половых хромосом (в частности, синдромов Клайнфелтера, Шерешевского-Тернера и др.), характеристики ряда физиологических процессов (в частности, менструального цикла), исследования общих и локальных закономерностей ряда патологических процессов и прежде всего злокачественных новообразований, выяснения действия некоторых терапевтических методов и средств (антибиотиков, кортикостероидов, цитостатических препаратов).

К методам цитогенетического анализа относится также изучение кариотипа (см.).

Установлено, что хромосомный набор человека состоит из 46 хромосом (23 пары), двух половых хромосом (XX - у женщины, XY - у мужчины), 22 пар аутосом (рис. 5) и отличается высоким постоянством в клетках человеческого организма.

В зависимости от длины хромосом и расположения их центромер весь хромосомный набор делится на 7 групп - А, В, С, D, Е, F, G.

Для изучения хромосомного набора человека (кариотипа) используют методы культивирования лейкоцитов периферической крови, фибробластов эмбриональной ткани, культивирование клеток кожи и прямой метод определения хромосомного набора в клетках костного мозга.

Впервые об успешном культивировании неделящихся лейкоцитов сообщил советский биолог Г. К. Хрущев (1935). В 1958 г. Ноуэлл (P. Nowell) предложил использовать для стимуляции деления лейкоцитов вещество, выделенное из бобовых растений,- фитогемагглютинин (ФГА). Культивирование лейкоцитов осуществляют по модифицированной и усовершенствованной методике. 10 мл венозной крови, взятой стерильно в пробирку с гепарином (1 мл ампулированного гепарина разводят в 20 раз раствором Хенкса), помещают на 30-40 мин. в холодильник. Затем стерильно (в боксе) в кровь добавляют 0,7 - 1 мл 10% раствора желатины для ускорения осаждения эритроцитов. После отстаивания крови плазму отсасывают и помещают в стерильную колбу. К плазме добавляют среду 199 либо среду Игла из расчета 1,5 мл среды на 1 мл плазмы.

Для стимуляции митотической активности лейкоцитов в смесь добавляют 0,2 мл ФГА. Полученную клеточную суспензию помещают в термостат при t° 37° на 72 часа. За 2-3 часа до проведения фиксации на каждый флакон (суспензия для культивирования разливается по 1,5-2 мл в стерильные флаконы типа пенициллиновых) добавляют по 0,5-0,75 мкг колхицина (рабочий раствор колхицина: 10 мкг на 1 мл дистиллированной воды) и продолжают культивирование. В дальнейшем культуры центрифугируют в течение 5 мин. при 800 об/мин. Надосадочную жидкость сливают, к ней добавляют 3-5 мл 0,95% раствора цитрата натрия, нагретого до t°37°, который вызывает набухание клеток. В гипотоническом растворе клетки находятся от 15 до 30 мин., после чего надосадочную жидкость сливают, к осадку осторожно добавляют фиксатор (3 ч. абсолютного спирта + 1 ч. ледяной уксусной кислоты), ставят в холодильник на 15 мин., затем повторно центрифугируют и меняют фиксатор. На обезжиренные предметные стекла наносят 1-2 капли клеточной суспензии и высушивают над пламенем либо поджигают фиксатор («жженые» препараты). Препараты красят полихромной синью Унны, ацетоорсеином или по Романовскому. Хромосомный набор изучают при помощи иммерсионной микроскопии в 100 метафазных пластинах.

Для изучения хромосом используют также прямой метод определения хромосомного набора в клетках костного мозга: 1 мл свежеаспирированного пунктата костного мозга помещают в колбу с 30 мл среды 199 и 3 мл раствора колхицина (10 мкг на 1 мл). Содержимое колбы осторожно взбалтывают для равномерного распределения клеток, а затем центрифугируют. Надосадочную жидкость сливают и к осадку добавляют 10 мл 0,95% раствора цитрата натрия, подогретого до t° 37°. Клетки тщательно ресуспензируют и помещают в термостат при t° 37° на 40-45 мин. После этого вновь проводят центрифугирование, надосадочную жидкость сливают и к осадку добавляют свежеприготовленный фиксатор, состоящий из 3 ч. метилового спирта и 1 ч. концентрированной уксусной кислоты. Через 10 мин. осадок ресуспензируют и оставляют в фиксаторе еще на 20 мин. при комнатной температуре, затем центрифугируют в течение 10 мин., вновь меняют фиксатор и приготовляют препараты тем же способом, как при фиксации культуры лейкоцитов крови.

Исследование кариотипа может быть с успехом использовано для диагностики хромосомных заболеваний человека. За последнее время выделена целая группа хромосомных болезней, связанных с патологией как половых, так и аутосомных хромосом (см. Наследственные болезни). Помимо изменения количества хромосом, возможно нарушение их морфологии. Так, при хроническом миелоидном лейкозе наблюдается необычно малая акроцентрическая хромосома из 21-й пары. Появление анеуплоидии (увеличение или уменьшение числа хромосом, некратное гаплоидному числу хромосом) может служить прогностическим тестом для терминальной стадии лейкоза.

Цитогенетические исследования все ближе смыкаются с онкологическими. Возможно, что изменения хромосомного набора при раковых процессах можно будет использовать для их ранней диагностики. Для цитогенетических исследований используют методы кратковременных тканевых культур: метод плазменного сгустка с последующим исследованием субкультур и метод первично трипсинизированных суспензионных культур. Предпочтение следует отдать первому методу, так как второй требует большого количества ткани для получения суспензии клеток, способных к размножению.

Для создания наиболее благоприятных условий метаболизма используют плацентарную сыворотку человека, не обладающую токсичностью, 50% эмбриональный экстракт абортированных плодов человека, который готовят на среде Игла. Для закрепления кусочков на стекле и прикрепления большего числа клеток при применении суспензионных культур используют сухую человеческую плазму IV группы, разведенную перед употреблением средой Игла и плацентарной сывороткой 1:1; после внесения эксплантата добавляют эмбриональный экстракт. Культивирование проводят во флаконах Карреля (см. Культура тканей).

Рис. 1. Половой хроматин в виде овала (Х1100).
Рис. 2. Половой хроматин в виде треугольника (XI100).
Рис. 3. Половой хроматин в виде утолщения ядерной оболочки (Х1100).
Рис. 4. Хроматинотрицательное ядро у женщины (Х1100).
Рис. 5. Нормальный женский кариотип (x1100).

БИОЛОГИЧЕСКИЕ ОСНОВЫ ЖИЗНЕДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА

Цитогенетический метод, его значение

Цитогенетический анализ позволяет записывать диагноз наследственного заболевания в виде каріотипічної формулы.

Цитогенетический метод (метод хромосомного анализа) основывается на микроскопическом исследовании структуры и количества хромосом. Он получил широкое применение в 20-е годы XX века, когда были получены первые сведения о количестве хромосом у человека. В 30-х годах были идентифицированы первые 10 пар хромосом.

В 1956 г. шведские ученые Дж. Тийо и А. Леван впервые доказали, что у человека 46 хромосом.

Цитогенетический метод используют для:

Изучение кариотипов организмов;

Уточнение числа хромосомных наборов, количества и морфологии хромосом для диагностики хромосомных болезней;

Составление карт хромосом;

Для изучения геномного и хромосомного мутационного процесса;

Изучение хромосомного полиморфизма в человеческих популяциях.

Хромосомный набор человека содержит большое количество хромосом, основные сведения о которых можно получить при изучении их в метафазе митоза и профазе - метафазе мейоза. Клетки человека для прямого хромосомного анализа получают путем пункции костного мозга и биопсии гонад, или косвенным методом - путем культивирования клеток периферической крови (лимфоциты), когда получают значительное количество метафаз. Косвенным методом исследуют также клетки амниотической жидкости или фибробласты, полученные при амніоцентезі или биопсии хориона, клетки абортусів, мертворожденных и др.

Чаще исследуют хромосомы в лимфоцитах периферической гепаринізованої крови. Для стимуляции митоза добавляют фитогемагглютинин, а для остановки митоза - колхицин. Препарат окрашивают ядерными красителями: 2 % раствором ацеторсеїну, азуреозином, красителем Унна, раствором Гимза и др. Накрывают покровным стеклышком, удаляют избыток красителя фильтровальной бумагой, рассматривают под микроскопом с масляной імерсією.

В последнее время все исследования в цитогенетиці человека проводят с применением методов дифференциального окраска хромосом, которые позволяют отличить каждую хромосомную пару. Существует несколько способов окраски: Q , G , С, R (рис. 1.42). В решении вопросов диагностики хромосомных болезней разные методы дифференциальной окраски применяют в комбинации. Благодаря дифференциальному окраске хромосом можно обнаружить незначительные хромосомные поломки: небольшие делеции, транслокаціїта др.

Получив мікропрепарат, изучают его визуально и составляют ідіограму кариотипа, то есть упорядоченное размещение каждой пары хромосом по индивидуальным признакам различий: общая длина хромосомы, форма, расположение центромеры.

Большинство хромосом по такому методу можно только отнести к определенным группам согласно Денверской классификации (см. раздел 1.2.2.12).

Этот метод позволяет диагностировать много наследственных болезней, изучать мутационный процесс, сложные перестройки и малейшие хромосомные аномалии в клетках, которые вступили в фазу деления и вне делением.

На хромосомный анализ направляются пациенты с множественными врожденными пороками развития, дети с задержкой физического и психомоторного развития, пациенты с недиференційованими формами олигофрении (слабоумия), с нарушением половой дифференцировки, женщины с нарушением менструального цикла (первичная или вторичная аменорея), семьи с бесплодием, женщины с привычным невынашиванием беременности (выкидыши, мертворожденные).

Цитогенетический метод

Идеограмма хромосом.

Идиограмма - графическое изображение отдельных хромосом со всеми их структурными характеристиками.

Генетика соматических клеток.

С помощью этих методов изучают наследственность и изменчивость соматических клеток, что в значительной мере компенсирует невозможность применения к человеку метода гибридологического анализа.

Методы генетики соматических клеток, основанные на размножении этих клеток в искусственных условиях, позволяют не только анализировать генетические процессы в отдельных клетках организма, но благодаря полноценности наследственного материала, заключенного в них, использовать их для изучения генетических закономерностей целостного организма.

В связи с разработкой в 60-х гг. XX в. методов генетики соматических клеток человек оказался включенным в группу объектов экспериментальной генетики. Благодаря быстрому размножению на питательных средах соматические клетки могут быть получены в количествах, необходимых для анализа. Они успешно клонируются, давая генетически идентичное потомство. Разные клетки могут, сливаясь, образовывать гибридные клоны. Они легко подвергаются селекции на специальных питательных средах и долго сохраняются при глубоком замораживании. Все это позволяет использовать культуры соматических клеток, полученные из материала биопсий (периферическая кровь, кожа, опухолевая ткань, ткань эмбрионов, клетки из околоплодной жидкости), для генетических исследований человека, в которых используют следующие приемы: 1) простое культивирование, 2) клонирование, 3) селекцию, 4) гибридизацию.

Культивирование позволяет получить достаточное количество клеточного материала для цитогенетических, биохимических, иммунологических и других исследований.

Планирование - получение потомков одной клетки; дает возможность проводить в генетически идентичных клетках биохимический анализ наследственно обусловленных процессов.

Селекция соматических клеток с помощью искусственных сред используется для отбора мутантных клеток с определенными свойствами и других клеток с интересующими исследователя характеристиками.

Гибридизация соматических клеток основана на слиянии совместно культивируемых клеток разных типов, образующих гибридные клетки со свойствами обоих родительских видов. Для гибридизации могут использоваться клетки от разных людей, а также от человека и других животных (мыши, крысы, морской свинки, обезьяны, джунгарского хомячка, курицы).

Гибридные клетки, содержащие два полных генома, при делении обычно «теряют» хромосомы предпочтительно одного из видов. Например, в гибридных клетках «человек - мышь» постепенно утрачиваются все хромосомы человека, а в клетках «человек - крыса» - все, кроме одной, хромосомы крысы, с сохранением всех хромосом человека. Таким образом можно получать клетки с желаемым набором хромосом, что дает возможность изучать сцепление генов и их локализацию в определенных хромосомах.

Постепенная потеря хромосом человека из гибридных клеток параллельно с изучением ферментов дает возможность судить о локализации гена, контролирующего синтез данного фермента, в определенной хромосоме.

Благодаря методам генетики соматических клеток можно изучать механизмы первичного действия и взаимодействия генов, регуляцию генной активности. Они позволяют судить о генетической гетерогенности наследственных болезней, изучать их патогенез на биохимическом и клеточном уровнях. Развитие этих методов определило возможность точной диагностики наследственных болезней в пренатальном периоде.

Цитогенетический метод используется для диагностики пола и анализа хромосомных заболеваний.

Диагностика пола производится с помощью анализа Х-хроматина в клетках кро­ви или буккального эпителия. Х-хромосома образует, так называемое, тельце Барра, У-хромосома — F-тельце.

Для анализа хромосомных аномалий используют различные методы окраски:

    рутинная окраска — дает возможность выявить нарушения числа хромосом, т.к. они окрашиваются в равномерно черный цвет.

    дифференциальные методы дают возможность окрасить хромосомы неравномерно, выделяя светлые и темные участки. При таком окрашивании можно выявить не только числовые нарушения, но и структурные изменения хромосом.

Показания для использования цитогенетического метода:

1.Если при клиническом обследовании у пробанда обнаружены признаки хрони­ческих болезней, но диагноз не установлен.

2.При диагностике наследственных болезней, характеризующихся хромосом­ной нестабильностью.

3.При определении прогноза потомства, если в родословной имеются лица с хромосомными болезнями.

4.При многократных спонтанных абортах, мертворождениях и наличии несколь­ких детей с врожденными пороками развития.

5.У женщин с нарушением репродуктивной функции неясного генеза.

Биохимический метод используется для:

    установления дифференцированного диагноза заболевания

    выявления гетерозиготности

    в дородовой диагностике

С его помощью выясняют нарушения обмена. Показания к биохимическим исследованиям:

    умственная отсталость

    нарушение психического статуса

    нарушение физического развития костей туловища и конечностей, снижение слуха, зрения, ожирение

    непереносимость отдельных продуктов и лекарств

Амниоцентез — метод забора и исследования околоплодной жидкости. Используется в пренатальной (дородовой) диагностике. Амниоцентез производят после предварите­льного УЗ-исследования с помощью которого определяют положение плаценты, срок беременности, исключают грубые пороки развития плода. Амниоцентез производят, как правило, трансабдоминально (прокол передней брюшной стенки). С помощью данного метода определяют:

    пол плода. Для этого берут 2-5 мл околоплодной жидкости. После центри­фугирования осадок, содержащий слущенные клетки эпителия плода, микрос-копируют для выявления Х- и У-хроматина

    кариотип плода. Это дает возможность определить хромосомные заболевания

    насл. дефекты обмена определяются б/х анализом амниотической жидкости. В случае выявления аномального плода возможно его абортирование, либо лечение внутриутробно или сразу после рождения.

Просеивающие программы (скрининг). Скрининг означает выявление болезни или дефекта развития с помощью тестов, обследований или процедур, дающих быстрый ответ. Основная цель скрининга — ранее выявление заболевания. В настоящее время более 20 заболеваний можно выявить с помощью скрининга, например: ФКУ, дефекты обмена, анемии, дефекты зрения, слуха, поведения, отклонения в росте, синдром Дауна, дефекты нерв­ной трубки и др. ДНТ — к этой группе относятся анэнцефалия и Анэнцефалия — это отсутствие части головного мозга, костей черепа и мягких тканей. Частота встречаемости 1 на 1000 новорожденных. Дети с анэнцефалией погибают вскоре после рождения вследствие дыхательных расстройств или при­соединения инфекции.

Spina bifita — это не закрытие позвоночного канала с отсутствием отдельных частей позвонков, в области дефекта спинной мозг деформирован и оказывается открытым или расположенным непосредственно под кожей. Патология встречается у 1 из 1000 новорожденных, а скрытый дефект лишь одного позво­нка — примерно у каждого десятого человека. Прогноз для жизни зависит от протяженности дефекта позвоночника, наличия спинномозговых грыж.

Для качественной своевременной диагностики врожденных заболеваний, предрасположенности к онкологическим патологиям используется цитогенетическое исследование.

С помощью современных методик и новейшего оборудования изучается хромосомный набор плода.

Найденные аномалии в хромосомном аппарате позволят выявить и предотвратить возможные патологии еще до рождения ребенка.

Данная процедура отличается сложностью и многоступенчатостью, поэтому для решения каждой отдельной диагностической задачи требуется свое цитогенетическое специализированное обследование.

Цитогенетическое исследование изучает связи между наследственными факторами и ядерными структурами соматических клеток человека.

Данные методы анализа широко используются в биологии и медицине для определения происхождения, эволюции, изменчивости живых существ на протяжении филогенеза и онтогенеза.

Особое внимание уделяется индивидуальным генетическим особенностям. Именно поэтому главным предметом, с которым работает цитогенетический метод исследования, является хромосомный набор человека, животных и растений.

Изменения в хромосомах, передаваясь по наследству, определяют признаки организма, его подверженность различным заболеваниям, устойчивость к неблагоприятным факторам внешней среды.

Именно хромосомы определяют передачу некоторых заболеваний, поэтому по их набору и структурным изменениям можно увидеть предрасположенность конкретного человека к развитию онкологических и других тяжелых болезней.

Разнообразные структурные перестройки хромосом, аномалии хромосомного набора выявляет цитогенетический анализ и исследование.

Такие методики применяются для современной диагностики опасных заболеваний на начальных стадиях их развития.

На ранних стадиях беременности применение цитогенетического исследования хромосом плода позволяет определить пол будущего ребенка на клеточном уровне.

Высокотехнологичное оборудование последнего поколения, проверенные методики исследования позволяют обнаруживать и предотвращать онкологические заболевания и генетические патологии.

Точная диагностика дает возможность определить наиболее оптимальную тактику лечения, которая будет способствовать положительному терапевтическому результату.

Успешность такой процедуры зависит от качества, точности оборудования, квалификации, опыта медицинского персонала.

Точные данные анализа хромосом определяют успешность всего последующего лечения, поэтому необходимо стараться с первого раза получить правильные результаты.

Иногда данный вид диагностики оказывается единственно возможным. Эта технология исследования позволяет создать большое количество копий ДНК, которые исследуются различными способами, повышая достоверность результатов.

Выявленная на ранних стадиях болезнь лечится намного легче, а эффективная быстрая терапия зачастую спасает жизнь.

Исследование кариотип

Хромосомный набор (кариотип) изучается несколькими способами, которые используют различный биологический материал для анализов.

Исследование кариотип чаще всего работает с венозной кровью, которая смешивается в пробирке с литием и гепарином.

Забор крови производится в количестве 2 мл, после чего она содержится внутри питательной среды на протяжении 3 суток. Только после этого полученный материал фиксируется и исследуется под микроскопом.

За месяц до анализа хромосом следует отказаться от приема антибиотиков, кроме того, такие процедуры не проводятся при простудных заболеваниях.

Исследования кариотипа (кариотипирование) анализирует с помощью методики световой микроскопии форму, размер, число хромосом, используя специальное окрашивание. Нормальные показатели у мужчин обозначаются 46,XY, а у женщин – 46,XX.

Кариотипирование исследует структурные аномалии генетического материала, которые связаны с разрывами хромосом. Эти разрушения компенсируются с помощью различных нездоровых аномальных комбинаций.

С развитием современной медицинской техники появляются новые цитогенетические методики исследования, которые эффективно идентифицируют такие патологические изменения хромосом.

Если существуют подозрения на генетические отклонения в развитии эмбриона человека, то отдельно производится цитологический анализ плода.

Современные медицинские центры с хорошим оборудованием и квалифицированным персоналом выявляют различные пороки развития, хромосомные болезни, с достаточно высокой точностью определяют возможности благополучно выносить ребенка.

Если есть подозрения на онкологические заболевания органов системы кроветворения, то назначается цитологическое исследование костного мозга.

Такие анализы проводятся только в медицинских учреждениях, которые имеют специальное оборудование и квалифицированный персонал.

Это вызвано тем, что забор биологического материала для анализа и исследования связан с опасностью для здоровья и жизни.

С целью исключения хромосомных заболеваний плода на 3-4 месяце беременности проводится анализ хориона, который исследует не менее 20 клеток системы кроветворения.

Такое тестирование поможет предвидеть такие патологии, как болезнь Хантера, синдром Дауна и многие другие заболевания.

Изменение набора хромосом при онкологических процессах может быть использовано для ранней диагностики рака, поэтому диагностические исследования на цитологическом уровне активно развиваются с ростом технического прогресса.

Задачи анализа кариотипа и его виды

Подробное изучение кариотипа проводится для решения следующих конкретных задач:

  • уточнения диагностического основания для назначения оптимального лечения онкологических заболеваний;
  • выявления причины врожденных заболеваний ребенка на генетическом уровне;
  • нахождение генетических причин выкидыша, женского бесплодия;
  • выявление последствий воздействия вредных факторов на работе;
  • обнаружения аномальных хромосом у плода.

Таким образом, показаниями к проведению подобного анализа являются бесплодие, прерывание беременности, подозрение на хромосомные патологии, отсутствие менструаций у женщин половозрелого возраста, нарушения и задержки полового развития.

Хромосомные аномалии у плода нередко могут становиться причиной неразвивающейся беременности.

В зависимости от уровней проведения анализ кариотипа бывает двух видов:

  • обычным;
  • молекулярным.

Если нарушение нормального кариотипа происходит на ранних стадиях полового развития человека, то при слиянии половых клеток и образовании зиготы такие аномалии сохраняются.

В дальнейшем развитии эмбрион сохраняет патологические неправильные хромосомы. Такое положение приводит к патологическим изменениям индивидуального развития, которые нередко оказываются нежизнеспособными.

Однако бывает положение, когда изначально при делении зиготы развивается несколько линий делений клеток, которые имеют разные кариотипы. Это позволяют выявить обычные цитогенетические методы исследования.

Молекулярное кариотипирование является самым современным методом исследования генома человека. С помощью такого анализа появилась возможность выявлять различные вариации числа копий генов.

Такие патологии характеризуются потерями участков молекул ДНК, которые содержат важную генетическую информацию. Все это приводит к умственной отсталости, эпилепсии, раку, аутизму.

С помощью этого метода можно достаточно точно определить гены, которые находятся в области перестройки, выяснить их непрямой или непосредственный вклад на развитие генетических заболеваний.

На сегодняшний день этот метод является важнейшим инструментом для постановки точного диагноза большинства генетических патологий.

Процедура кариотипирования

Набор внутри соматических клеток организма, состоящий из 23 пар хромосом, одна из которых передается от матери, а другая – от отца, представляет собой кариотип человека.

Для проведения анализа кариотипа используются любые клетки, которые могут быть получены из крови, костного мозга, эпителия человека.

На протяжении клеточного цикла внешний вид хромосом значительно меняется. На одних стадиях митоза они располагаются внутри ядра, не имеют спиральной формы, а на других образуется спиральная структура большего размера.

Наиболее подходящий для внешнего наблюдения этап клеточного деления – метафаза. Именно на этой стадии можно проводить микроскопическое исследование хромосом.

Исследовательская процедура проводится в следующем порядке:

  1. Митоз останавливается на стадии метафазы и с помощью добавления колхицина, который фиксирует незаконченный процесс деления клеток, выделенная клеточная структура обогащается;
  2. Такие клетки окрашиваются, фиксируются, после чего их фотографируют под микроскопом;
  3. Полученные фотографии гомологичных хромосом систематизируются и выкладываются в определенном порядке.

С появлением методов дифференциальной окраски хромосом стала возможна их более подробная детализация при микроскопическом исследовании. Со временем эта методология совершенствовалась и развивалась.

Сдать анализ на определение кариотипа можно во многих специализированных клиниках. При этом такая процедура может проводиться в двух вариантах.

В первом случае анализируются количественные и структурные изменения хромосом, полученных от родителей.

Во втором анализируются внутренние мутации хромосом под влиянием неблагоприятных внешних факторов.

Нередко кариотипирование назначается супругам для определения причин бесплодия. При этом сдача биологического материала на анализ может происходить в разное время.

Таким образом, анализ кариотипов имеет большое значение в медицине, поскольку позволяет определять хромосомные перестройки, нарушения их структуры и порядка.

Цитогенетические обследования диагностируют ряд генетических заболеваний, которые напрямую связаны с хромосомами.

Основа метода – микроскопическое изучение хромосомы. Цитологические исследования стали широко использоваться с начала 20-гг. ХХ в . для изучения морфологии хромосом, культивирования лейкоцитов для получения метафазных пластинок .

Развитие современной цитогенетики человека связано с именами цитологов Д.Тио и А.Левана. В 1956 г. они первыми установили, что у человека 46 хромосом , что положило начало широкому изучению митотических и мейотических хромосом человека.

В 1959 г. французские ученые Д.Лежен, Р.Тюрпен и М. Готье установили хромосомную природу болезни Дауна. В последующие годы были описаны многие другие хромосомные синдромы, часто встречающиеся у человека. Цитогенетика стала важнейшим разделом практической медицины. В настоящее время цитогенетический метод применяется для диагностики хромосомных болезней, составление генетических карт хромосом, изучения мутационного процесса и других проблем генетики человека.

В 1960 г. в г. Денвере была разработана первая Международная классификация хромосом человека. В ее основу легли размеры хромосом и положение первичной перетяжки – центромеры. Все хромосомы по форме разделены на метоцентрические, субметацентрические и акроцентрические и подразделены на 7 групп, обозначенных латинскими буквами А, В, С, D, E, F, G. Каждая пара хромосом была наделена порядковым номером от 1 до 22, выделены отдельно и поименованы латинскими буквами – Х и У половые хромосомы.

В 1971 г. на Пражской конференции генетиков в дополнении к Денверской классификации были представлены методы дифференциальной окраски хромосом, благодаря которым каждая хромосома приобретает свой неповторимый рисунок, что помогает точной идентификации.

Основные сведения о морфологии хромосом человека получены при изучении их в метафазах митоза и профазе – метафазе мейоза. При этом важно, количество делящихся клеток, было высоким. Важнейшие цитогенетические работы выполнены на лимфоцитах переферической крови, поскольку культивирование лимфоцитов в течение 2-3 суток в присутствии фитогемагглютинина позволяет получить метофазные пластинки для хромосомного анализа.

Цитогенетическому анализу подвергают однослойные метафазные пластинки с раздельно лежащими хромосомами. Для этого делящиеся клетки обрабатывают кольхицином и некоторыми химическими веществами.

Важным этапом цитогенетического анализа является окраска полученных препаратов. Ее проводят простыми дифференциальными и флуоресцентными методами.

Успехи молекулярной цитогенетики человека позволяют разработать новые методы изучения хромосом. Так, следует отметить метод флуоресцентной гибридизации, который дает возможность исследовать широкий круг вопросов: от локализации гена до расшифровки сложных перестроек между несколькими хромосомами.

Таким образом, соединение цитогенетических и молекулярно – генетических методов в генетике человека делает почти неограниченными возможности диагностики хромосомных аномалий.