Нужна ли атомная энергетика в борьбе с изменением климата? Атомная энергетика — За и Против Борцы с атомной энергетикой

Нужна ли атомная энергетика в борьбе с изменением климата? Атомная энергетика — За и Против Борцы с атомной энергетикой

Согласно наиболее распространенному в научной и околонаучной литературе определению, низкоэнергетические ядерные реакции (lowenergy nuclear reactions, общепринятая аббревиатура - LENR) - это такие ядерные реакции, при которых трансмутация химических элементов протекает при сверхнизких энергиях, и не сопровождается появлением жесткого ионизирующего излучения.

Под холодным ядерным синтезом обычно понимают реакцию слияния ядер изотопов водорода при температуре, существенно меньшей, чем в термоядерных реакциях. К великому сожалению, основная масса физиков не делает различия между LENR и ХЯС.

Существует расхожее мнение, что такие процессы согласно канонам ядерной физики невозможны. Это мнение было даже узаконено решением комиссии по лженауке при Президиуме РАН в конце 1990-х годов, о чем объявил ее тогдашний руководитель академик Э. П. Кругляков.

В результате к лженауке оказались причислены классические научные работы. Например, под определение LENR, данное Комиссией, подпадает электронный захват, открытый Л.У. Альварецом в 1937 году. Обратная реакция, так называемый β- распад в связанное состояние, также, несомненно, относится к LENR- процессам. Первое упоминание о нем датировано 1947 годом. Теория β- распада в связанное состояние была создана в 1961 г. Этот процесс был исследован экспериментально в крупном международном ядерном центре в Дармштадте в конце XX века.

Но и это еще не все. В 1957 году в ядерном центре в Беркли было открыто явление мюонного катализа ядерных реакций синтеза в холодном водороде! Оказалось, что если в молекуле водорода один из электронов заменить на мю- мезон, то ядра атомов водорода, входящих в эту молекулу, могут вступить в реакцию слияния.

Причем, если эта молекула тяжелого водорода, то реакция слияния ядер идет с очень высокой вероятностью. Группу экспериментаторов возглавлял все тот же Л.У. Альварец. Другими словами, как «низкоэнергетическая трансмутация химических элементов», так и «холодный ядерный синтез» (а это не совсем одно и то же) были открыты одним и тем же ученым.

За эти, и другие выдающиеся открытия (создание пузырьковой камеры), он был удостоен Нобелевской премии по физике в 1968 году.

Так что российская Комиссия по лженауке слегка перестаралась в борьбе «за чистоту рядов». Случай, когда на столь высоком уровне оказалось де-факто аннулированным решение Нобелевского комитета, не имеет прецедентов в истории науки!

Девиантное поведение научного сообщества в отношении проблем LENR и ХЯС не заканчивается на пренебрежении мнением Нобелевского комитета. Если открыть журнал «Успехи физических наук» т. 71. вып. 4. за 1960 год, то там можно увидеть обзор Я.Б. Зельдовича (академик, трижды Герой социалистического труда) и С.С. Герштейна (академик) под названием «Ядерные реакции в холодном водороде».

В нем кратко изложена и предыстория открытия ХЯС, а также приведена ссылка на практически недоступную работу А.Д. Сахарова «Пассивные мезоны». Кроме того, в обзоре упоминается, что явление ХЯС (мю-катализ в холодном водороде) было предсказано сэром Ф.Ч. Франком (член Лондонского Королевского общества), А.Д. Сахаровым (академик, трижды Герой социалистического труда, лауреат Нобелевской премии мира) и упомянутым выше академиком Я.Б. Зельдовичем.

Но, несмотря на это, руководитель Комиссии по лженауке РАН академик Э.П. Кругляков, как отмечалось, объявил ХЯС лженаукой, хотя о мю-катализе и пьезоядерных реакциях в статье «Ядерные реакции в холодном водороде» было написано очень ясно, подробно и доказательно.

Единственное, что может в какой-то степени служить оправданием чрезмерно вольного обращения с терминологией, использованной в полемике Комиссией по лженауке, так это то, что ее нападки на «трансмутологов» в основном были направлены на пресечение любых исследований по реакциям холодного ядерного синтеза в конденсированных средах (condensed matter nuclear science - CMNS).

К сожалению, при этом «под раздачу» попали и весьма перспективные научные направления.

Как показал анализ истории CMNS, уничтожение этого научного направления Комиссия по лженауке при Президиуме РАН осуществляла отнюдь не бескорыстно. Расправа велась с очень опасным конкурентом, победа которого в научном споре могла означать полное прекращение бюджетного финансирования работ по проблеме управляемого термоядерного синтеза (УТС).

В условиях экономического кризиса 1990-х годов это означало бы закрытие многих НИИ, входящих в РАН. Академия наук допустить этого не могла, и не стеснялась в выборе средств борьбы с конкурентами.

Но и это - только одна, и, похоже, не самая главная причина, по которой ХЯС оказался «гадким утенком» от ядерной физики. Любой специалист, хорошо знакомый с проблемой УТС, может подтвердить, что теоретические запреты на явления LENR и ХЯС являются столь серьезными, что преодолеть их не представляется возможным.

Именно этот аргумент повлиял на отношение большинства физиков к обсуждаемой проблеме. Именно ясное понимание того, насколько серьезны аргументы теоретиков, заставляло многих, даже в высшей степени квалифицированных физиков, с порога отметать любые сообщения об экспериментальном обнаружении LENR, ХЯС или CMNS.

Продолжительное игнорирование большинством физиков экспериментально подтвержденного факта существования низкоэнергетических ядерных процессов является прискорбным заблуждением.

Описываемые процессы многие ученые до сих пор относят к разряду несуществующих по известному принципу: «этого не может быть, потому, что этого не может быть никогда».

К этому следует добавить, что кроме «эффекта шорности», заставлявшего физиков-ядерщиков скептически относиться к самой возможности низкоэнергетической трансмутации химических элементов и холодного ядерного синтеза, зловещую роль в прохладном отношении профессионалов к излагаемой тематике сыграли различного рода «трансмутологи», претендовавшие на изобретение нового «философского камня».

Непрофессионализм «новых алхимиков» и вызываемое ими раздражение у профессионалов, хорошо знакомых с сутью проблемы, привели к тому, что исследования в перспективной области человеческого знания оказались замороженными на десятилетия.

Однако в процессе яростной критики работ «трансмутологов» ученые, высказывавшие официальную точку зрения на проблему холодного ядерного синтеза, нечаянно подзабыли, что термин «лженаука» означает скорее похвалу, нежели осуждение.

Ведь давно известно, что вся современная наука родом из лженауки. Физика - из метафизики, химия - из алхимии, медицина - из знахарства и шаманства.

Авторы полагают, что нет особого смысла перечислять многочисленные конкретные примеры. Но то, что идеи Джордано Бруно, Галилео Галилея и Николая Коперника считались их современниками не просто лженаучными, а сущей ересью, забывать не стоит. Так уже бывало и в новейшей истории...

В настоящее время в похожую историю попала физика холодного ядерного синтеза и низкоэнергетической трансмутации химических элементов. И, отнюдь, не в одной России!

Справедливости ради надо отметить, что комиссия по лженауке, аналогичная российской, имеется и в США. Работает она точно так же, как и в РФ. Причем в законопослушной Америке запрет на федеральное финансирование «лженаучных» исследований является абсолютным, а в России эти запреты некоторые особо ушлые деятели науки ухитряются каким-то образом обходить. Впрочем, и в других странах тоже.

Пока официальная российская наука избавлялась от «лжеученых», американские, французские и японские конкуренты не теряли времени даром. Например, в Соединенных Штатах исследования холодного синтеза были объявлены лженаукой только для гражданских лиц.

В лабораториях военно-морского флота США исследования велись с начала 1990-х годов. По непроверенным сведениям, более 300 физиков и инженеров практически вслепую, не имея сколько-нибудь приемлемой теории, свыше 20 лет работали в Ливерморе над созданием установок холодного ядерного синтеза. Их усилия увенчалась созданием опытных образцов энергетических реакторов ХЯС мощностью около 1 МВт.

В настоящее время в США и Италии ведутся работы по созданию LENR- реакторов (генераторов тепловой энергии), работающих на никель-водородных элементах. Безоговорочным лидером этих исследований является А. Росси.

К процессу исследований LENR и ХЯС подключились также корпорации Leonardo Technologies Inc. (LTI), Defkalion Green Technologies (Греция), E.ON (Италия) и др. Холодный ядерный синтез - это уже давным-давно не наука.

Это инженерная практика, притом, весьма успешная. И только в России по-прежнему пресекаются любые попытки гласной государственной поддержки научных работ в этом направлении.

Цели настоящей публикации - показать возможности описания LENR, ХЯС и CMNS в терминах ортодоксальной ядерной физики, и оценка перспектив практического использования этих явлений в энергетике и других областях человеческой деятельности.

История открытия LENR

Первое упоминание о явлении низкоэнергетической трансмутации химических элементов датировано 1922 годом. Химики С. Айрион и Дж. Вендт, исследуя образцы вольфрама в электрохимических экспериментах, зарегистрировали выделение гелия. Этот результат не был воспринят научным сообществом, в том числе и потому, что Э. Резерфорду так и не удалось его воспроизвести.

Другими словами, в первой же работе, посвященной проблеме ядерных превращений при низких энергиях, ее авторы С. Айрион и Дж. Вендт наступили на пресловутые «грабли невоспроизводимости», о которые впоследствии спотыкались практически все ученые, пытавшиеся исследовать этот интереснейший феномен.

Более того, основная критика многочисленных работ по холодному синтезу связана с плохой воспроизводимостью результатов, полученных различными энтузиастами, не имеющими специфической профессиональной подготовки экспериментатора-ядерщика.

В то же время, существуют надежные экспериментальные данные, полученные в лучших научных лабораториях, неопровержимо указывающие на то, что «запрещенные» процессы имеют место.

В связи с этим дословно приведем выводы академика И.В. Курчатова на лекции, прочитанной им 25 апреля 1956 г. на эпохальной конференции в английском атомном центре в Харуэлле:

«Жесткое рентгеновское излучение возникает при прохождении больших токов через водород, дейтерий и гелий. Излучение при разрядах в дейтерии всегда состоит из коротких импульсов.

Импульсы, вызываемые нейтронами и рентгеновскими квантами, могут быть точно сфазированы на осциллограммах. При этом оказывается, что они возникают одновременно.

Энергия рентгеновских квантов, появляющихся при импульсных электрических процессах в водороде и дейтерии, достигает 300 - 400 кэВ. Следует отметить, что в тот момент, когда возникают кванты с такой большой энергией, напряжение, приложенное к разрядной трубке, составляет всего лишь 10 кВ».

Было также указано, что наблюдаемые реакции нельзя считать термоядерными. Этот вывод относится, в первую очередь, к гелию, у которого заряд ядра вдвое больше, чем заряд протона, и преодолеть кулоновский барьер в исследованной группой Курчатова области энергий невозможно.

По мотивам работ, выполнявшихся под руководством И. В. Курчатова, был даже снят великий фильм «Девять дней одного года». Физик, проф. В. С. Стрелков, выполнявший эксперименты по сильноточному электрическому разряду в газах, результаты которых докладывал в Харуэлле академик И. В. Курчатов, в отличие от киногероя Дмитрия Гусева, которого гениально сыграл в этом фильме Алексей Баталов, до сих пор работает в РНЦ «Курчатовский институт».

Более того, 25 ноября 2013 года состоялся семинар "Эксперименты на токамаках" на тему "Проект ТИН-АТ - возможный путь к демо- и гибридным реакторам", руководителем которого является проф. В.С. Стрелков.

Экспериментальные данные Курчатова по ядерным реакциям при сильноточном электрическом разряде в гелии согласуются с данными, полученными П.Л. Капицей на два года раньше. Это Петр Леонидович сообщил в своей Нобелевской лекции.

Таким образом, экспериментальные данные, полученные лучшими физиками ХХ века, четко указывают на существование до сих пор неизученных механизмов нейтрализации электрического заряда легчайших атомных ядер в области низких энергий.

Героический период становления советской ядерной науки не обошелся без подвигов на ниве LENR. Молодой, энергичный и очень талантливый физик И.С. Филимоненко создал гидролизную энергетическую установку, предназначенную для получения энергии от реакций «теплого» ядерного синтеза, идущих при температуре всего 1150 о С. Топливом для реактора служила тяжелая вода.

Реактор представлял собой металлическую трубу диаметром 41 мм и длиной 700 мм, изготовленную из сплава, содержавшего несколько граммов палладия.

В 1962 году И.С. Филимоненко подал заявку на изобретение «Процесс и установка термоэмиссии». Но Государственная патентная экспертиза отказала в признании заявленного технического решения изобретением на том основании, что термоядерные реакции не могут идти при столь низкой температуре.

Филимоненко экспериментально установил, что после разложения тяжелой воды электролизом на кислород и дейтерий, растворяющийся в палладии катода, в катоде происходят реакции ядерного синтеза.

При этом отсутствует как нейтронное излучение, так и радиоактивные отходы. Филимоненко предложил идею экспериментов еще в 1957 г, работая в оборонной промышленности.

Идея была воспринята и поддержана его непосредственным руководством. Было принято решение о начале исследований, и в кратчайшие сроки получены первые положительные результаты.

Дальнейшая биография И.С. Филимоненко - это основа для написания десятка авантюрных романов. За свою долгую жизнь, полную взлетов и падений, Филимоненко создал несколько вполне работоспособных реакторов ХЯС, но до разума властей так и не достучался. Совсем недавно, 26 августа 2013 года, Иван Степанович покинул нас на 89 году жизни.

Злополучная скандальная тематика не обошла стороной и Академию наук. Эффект аномального увеличения выхода нейтронов неоднократно наблюдался в опытах по колке дейтериевого льда.

В 1986 году академик Б.В. Дерягин с сотрудниками опубликовал статью, в которой были приведены результаты серии экспериментов по разрушению мишеней из тяжелого льда с помощью металлического бойка. В этой работе сообщалось, что при выстреле в мишень из тяжелого льда при начальной скорости бойка более 100 метров в секунду регистрировались нейтроны.

Результаты Б.В. Дерягина лежали вблизи коридора ошибок, воспроизведение их было непростым делом, а интерпретация механизма реакции была не вполне корректной.

Однако даже с поправкой на «электростатическую» интерпретацию экспериментов Б.В. Дерягина и его сотрудников, их работу можно смело отнести к числу важнейших решающих экспериментов, подтверждающих сам факт существования низкоэнергетических ядерных реакций.

Другими словами, если не принимать во внимание ранней работы С. Айриона и Дж. Вендта, результаты которой так никогда и никем не были воспроизведены, и закрытых работ И.С. Филимоненко, то можно считать, что холодный ядерный синтез был официально открыт именно в России.

Ажиотажный взрыв интереса к обсуждаемой проблеме возник только после того, как М. Флейшман и С. Понс на пресс-конференции 23 марта 1989 года сообщили об обнаружении ими нового явления в науке, известного сейчас как холодный ядерный синтез или синтез при комнатной температуре. Они электролитическим путем насыщали палладий дейтерием - проводили электролиз в тяжелой воде с палладиевым катодом.

При этом наблюдалось выделение избыточного тепла, рождение нейтронов, а также образование трития. В том же году было сообщение об аналогичных результатах, полученных в работе С. Джонса, Е. Палмера, Дж. Цирра и др. К сожалению, результаты М. Флейшмана и С. Понса оказались плохо воспроизводимыми, и на долгие годы были отвергнуты академической наукой.

Однако далеко не все эксперименты, в которых исследовались явления ХЯС и LENR, являются невоспроизводимыми.

Например, не вызывает сомнений достоверность и воспроизводимость представленных в работе И.Б. Савватимовой результатов регистрации остаточной радиоактивности методом авторадиографии поверхности катодных фольг из палладия, титана, ниобия, серебра и их сочетаний после облучения ионами дейтерия в тлеющем разряде.

Побывавшие в плазме тлеющего разряда электроды становились радиоактивными, хотя напряжение на них не превышало 500 В.

Результаты работ группы И.Б. Савватимовой, выполненных в Подольске на НПО «Луч», были подтверждены в независимых экспериментах. Они легко воспроизводимы, и однозначно свидетельствуют в пользу существования процессов LENR и ХЯС. Но самое замечательное в экспериментах И.Б. Савватимовой, А.Б. Карабута и др. состоит в том, что они относятся к числу решающих.

Весной 2008 года заслуженный профессор Йосиаки Арата из университета Осака, и его китайская коллега и неизменная соратница, профессор Юэчан Чжан из Шанхайского университета, в присутствии многочисленных журналистов представили очень красивый эксперимент.

На глазах у изумленной публики было продемонстрировано выделение энергии и образование гелия, не предусмотренные известными законами физики.

Эти результаты были удостоены Императорской премии «За бесценный вклад в науку и технику», которая в Японии котируется выше Нобелевской премии. Результаты эти были воспроизведены группой А. Такахаши.

К сожалению, всех упомянутых выше аргументов оказалось недостаточно, чтобы реабилитировать незаслуженно скомпрометированную тематику.

Стандартные возражения противников LENR и ХЯС

Зловещую роль в судьбе холодного ядерного синтеза сыграли его первооткрыватели М. Флейшман и С. Понс, анонсировавшие сенсационные результаты в нарушение всех правил ведения научной дискуссии.

Поспешность выводов и практически полное отсутствие знаний в области ядерной физики, продемонстрированные авторами открытия, привели к тому, что тематика ХЯС оказалась дискредитированной, и получила официальный статус лженауки во многих, но не во всех, странах, располагающих крупными центрами ядерных исследований.

Стандартные возражения, с которыми сталкиваются докладчики, рискнувшие огласить результаты крамольных исследований на международных конференциях по ядерной физике, обычно начинаются с вопроса: «В каких рецензируемых научных журналах, имеющих высокий индекс цитируемости, опубликованы надежные результаты, неопровержимо доказывающие существование обсуждаемого явления?». Ссылки на результаты солиднейших исследований, выполненных в университете Осака, оппонентами обычно отклоняются.

Иезуитская логика оппонентов лежит далеко за пределами научной этики, т.к. аргумент типа «Не там опубликовано» не может быть отнесен к разряду достойных возражений уважающего себя эксперта. Если не согласен с автором - возражай по существу. Напомню, что Роберт Юлиус Майер опубликовал работу, в которой был сформулирован закон сохранения энергии, в фармацевтическом журнале. На наш взгляд, наиболее достойным ответом упомянутой группе оппонентов являются десятки работ, опубликованных в авторитетных научных изданиях, и доложенных на самых престижных конференциях.

Ответы на другие аргументы противников LENR и ХЯС содержатся в сотнях работ, выполненных на деньги различных промышленных корпораций, включая такие гиганты, как Sony и Mitsubishi, и т.д.

Результаты этих исследований, квалифицированно выполненных, и уже доведенных до выхода на рынок сертифицированной и коммерчески выгодной промышленной продукции (реакторов А. Росси), по-прежнему продолжает отрицать научное коммьюнити, и безоговорочно принимают на веру сторонники гонимого научного направления.

Однако вопросы веры лежат вне плоскости науки. Поэтому «официальная наука» серьезно рискует попасть в число религий, бездумно отрицающих тезис, что практика - есть критерий истины.

Однако у академической науки имеются весьма серьезные аргументы для подобного отрицания, так как даже перечисленные выше работы, в которых приведены не вызывающие никаких сомнений экспериментальные данные, уязвимы для критики, поскольку ее, критику, не выдерживает ни одна из упоминаемых в них теорий.

Проблемы LENR и ХЯС и перспективы их разрешения

Гипотетический экзотический нейтринный атом «нейтроний» рождается в результате столкновения свободного электрона с атомом водорода, а распадается он на протон и электрон. Возможность существования нейтринных атомов связана с тем, что электрон и протон притягиваются не только благодаря тому, что обе частицы имеют электрический заряд, но и за счет так называемого слабого взаимодействия, из-за которого происходит β- распад ядер радиоактивных изотопов.

В июле 2012 года А. Росси был принят Бараком Обамой. В результате этой встречи проект А. Росси получил поддержку Президента Соединенных Штатов Америки, и на продолжение работ по холодному ядерному синтезу NASA было выделено $5 млрд., которые успешно осваиваются.

В США уже создан реактор LENR, существенно превосходящий по своим характеристикам опытный реактор А. Росси. Создали его специалисты NASA, используя передовые космические технологии. Запуск этого реактора состоялся в августе 2013 года.

В настоящее время в Греции работает корпорация Defkalion, отделившаяся от работающей в Италии и США компании Leonardo, основанной А. Росси. На сегодняшний день 850 компаний из 60 стран мира выразили готовность заключить с корпорацией Defkalion лицензионное соглашение.

Глобальные последствия работ А. Росси для России могут быть как позитивными, так и негативными. Ниже приведены возможные сценарии развития дальнейших событий в энергетике и глобалистике.

Очевидно, что от своевременной и адекватной реакции властей России на проводимые в США, Германии и Италии работы по «холодному синтезу» будет во многом зависеть и судьба российской экономики и страны в целом.

Сценарий 1, прогноз негативный. В случае если Россия продолжит политику наращивания поставок газа и нефти, невзирая на новые технологии LENR и ХЯС, Андреа Росси, имея работающий образец промышленного реактора, быстро организует его серийное производство на принадлежащем ему заводе во Флориде.

Себестоимость тепловой энергии, производимой этим ректором, в десятки раз ниже себестоимости тепловой энергии, получаемой при сжигании углеводородов. Америка уже третий год является крупнейшим в мире добытчиком газа.

Следует учесть, что США добывают в основном не природный, а сланцевый газ. Используя даровую энергию холодного ядерного синтеза, Америка начнет демпинговать на мировом рынке газа и синтетического бензина, производимого на основе процесса Фишера-Тропша или «юаровского процесса».

К Америке немедленно присоединяются Китай, ЮАР, Бразилия и ряд других стран, традиционно производящих значительное количество синтетического топлива из различных видов природного сырья.

Это приведет к мгновенному обрушению рынка нефти и газа с катастрофическими экономическими и политическими последствиями для России с ее нынешней сырьевой экономикой.

Сценарий 2, прогноз позитивный. Россия активно включается в исследования низкотемпературных ядерных реакций и запускает в обозримом будущем производство радиационно-безопасных LENR- и ХЯС-реакторов отечественной конструкции.

Следует отметить, что реакторы холодного синтеза являются источниками проникающей радиации, поэтому по нормам радиационной безопасности их нельзя будет использовать на транспорте до тех по, пока не будут созданы надежные средства защиты от этого вида радиации.

Дело в том, что реакторы LENR и ХЯС излучают «странное» излучение, фиксируемое пока только в виде специфических треков на специальных подложках. Воздействия «странного» излучения на биообъекты пока не изучены, и исследователи должны проявлять крайнюю осторожность при проведении экспериментов.

Вместе с тем, реакторы LENR и ХЯС большой мощности взрывоопасны, и на сегодняшний день никто не знает, как регулировать скорость энерговыделения в этих монстрах, а трансмутологи тщательно скрывают от политиков список человеческих жертв, принесенных на алтарь «холодного термояда».

Однако человечеству придется преодолеть эти и другие препятствия для получения дешевой электроэнергии, так как запасы углеводородов на Земле ограничены, а накопление радиоактивных отходов, образующихся от использования в реакторах АЭС ядерного топлива, возрастает.

Избежать падения мировых цен на нефть и газ в нынешней геополитической ситуации представляется невозможным, что чревато серьезными последствиями для России.

Однако если нашим ученым и инженерам удастся создать радиационно-безопасные LENR- и ХЯС-реакторы для производства дешевой электроэнергии, то российским промышленникам удастся постепенно захватить значительные сегменты мировых рынков продукции, требующей сегодня для своего производства значительных энергозатрат.

Так, используя дешевую энергию холодного ядерного синтеза, Россия может захватить значительную часть рынка пластмасс и пластмассовых изделий, поскольку их производство является энергоемким, и цена пластика напрямую зависит от себестоимости тепловой и электрической энергии.

Атомные электростанции на базе реакторов LENR и ХЯС позволят снизить себестоимость металлургического производства, т.к. себестоимость одного кВт.ч в этом случае снизится, как минимум, втрое.

Газификация углей и производство дешевого синтетического бензина из угля с использованием дешевой электроэнергии, производимой АЭС на базе ХЯС-реакторов, позволят России расширить производство и сбыт синтетических углеводородных энергоносителей.

Модернизация атомной энергетики, и увеличение при этом высвободившейся доли нефти и природного газа позволит расширить объемы производства продукции нефте- и газохимии. Плавный и контролируемый передел мировых рынков углеводородного сырья позволит России получить значительные конкурентные преимущества перед странами ОПЕК, и укрепить свои позиции в мире.

Воздействие излучения реакторов холодного синтеза позволяет в десятки раз сократить «время жизни» ядерных отходов, извлеченных из отработанного ядерного топлива АЭС.

Это явление открыто И.С. Филимоненко и экспериментально подтверждено на Сибирском химическом комбинате ныне покойным В.Н. Шадриным, который в конце 1990-х годов исследовал механизмы дезактивации радиоактивных отходов.

Используя эти наработки, Россия может полностью захватить рынок АЭС, возводя на территории действующих станций реакторы на основе холодного синтеза, которые будут не только вырабатывать энергию вместо выводимых из эксплуатации энергоблоков, но и дезактивировать радиоактивные отходы на территории АЭС, практически полностью исключив при этом экологические риски, связанные с их транспортировкой.

Все без исключения исследователи проблемы ХЯС, включая действительных членов Российской академии наук, не входящих в Комиссию по лженауке при Президиуме РАН, в один голос утверждают: холодный ядерный синтез есть объективная реальность.

В настоящее время оружейные приложения обсуждаемой тематики разрабатываются в крупных ядерных центрах США и других промышленно развитых стран. Гражданские аспекты применения ХЯС исследуются в Томском атомном центре и на Сибирском химическом комбинате в соответствии с утвержденными научно-исследовательскими программами РАН.

Кроме перечисленных, просматриваются также другие направления применения ХЯС и LENR: медицина (лучевая терапия и производство изотопов для диагностики и лечения онкологических заболеваний), биология (радиационная генная инженерия), длительный аэрокосмический мониторинг лесных массивов, нефтепроводов, газопроводов и других инженерных сооружений с помощью беспилотных летательных аппаратов с ядерным реактором.

Если все перечисленные особенности и преимущества новой ядерной энергетики использовать по-хозяйски, то Россия, в обозримом будущем, может занять лидирующее положение в мировой экономике. Существенное повышение энерговооруженности России укрепит ее оборонный потенциал, и усилит влияние на мировой политической арене.

«Атомный проект-2»

Одной из причин, по которой большая часть научной общественности прохладно относится к обсуждаемой проблеме, является чрезмерно оптимистическая оценка возможности обеспечения человечества даровой энергией, присутствующая в работах многочисленных изобретателей реакторов холодного синтеза.

К сожалению, обещания быстрого, легкого, а главное, дешевого успеха выглядят заманчиво только в проектах или бизнес-планах.

Для того чтобы LENR-энергетика действительно смогла выполнить свою историческую миссию и спасти человечество в будущем от жажды и голода, холода и жары, необходимо решить ряд архиважных задач, связанных с тем, что на пути глобального перевода энергетики с углеводородов на альтернативную ядерную энергетику стоит множество препятствий. Перечислим некоторые из них.

Теория ХЯС, как отмечалось, все еще находится в зачаточном состоянии.

В настоящем обзоре приведены только отдельные выдержки из работ одного из авторов настоящей публикации, профессора Ю.Л. Ратиса. И хотя качественно картина LENR и ХЯС уже вполне ясна, однако до создания рабочих методик проектирования и строительства «под ключ» соответствующих реакторов пока еще далеко.

Имеющиеся опытные образцы реакторов, как правило, демонстрационных, в большинстве своем, кроме реактора А. Росси, имеют относительно небольшую мощность.

Энтузиасты создавали их либо в надежде получить Нобелевскую премию за свое открытие, либо получить инвестиционные ресурсы для продолжения работ. Если не считать реактора А. Росси, в реакторах ХЯС реакции идут в неуправляемом режиме, поскольку разработчики в основной массе просто не знакомы ни с квантовой теорией, ни с ядерной физикой, а без этих знаний создать эффективную систему управления реактором невозможно.

На основе имеющегося опыта создания миниатюрных неуправляемых реакторов ХЯС малой мощности в принципе невозможно спроектировать энергетический реактор управляемого синтеза, пригодный для выработки тепловой и электрической энергии в промышленных масштабах.

Однако имеется обоснованная надежда преодолеть эти препятствия в течение одного - двух десятилетий. Ведь в Советском Союзе LENR-реакторы работали еще в 1958 году, и нашими учеными была создана основанная на известных законах физики теория соответствующих процессов.

Для реализации, условно говоря, «Атомного проекта-2» необходимо подготовить пакет предложений, который должен содержать технико-экономическое и оборонное обоснование проекта, включая:

а) перечень разрабатываемых конструкций и технологий гражданского, военного и двойного назначения;

б) описание географии проекта с обязательным обоснованием расположения хотя бы одного полигона, с учетом того, что на ранних этапах исследования ХЯС (конец 1950-х годов) мощность взрыва на электростанции ХЯС мощностью 6 МВт составила 1,5 килотонны ТНТ-эквивалента;

в) приблизительную смету проекта и этапы освоения выделенных бюджетных, внебюджетных и сторонних привлекаемых средств;

г) перечень объектов инфраструктуры и оборудования, необходимого для создания первых экспериментальных установок и измерительных приборов, необходимых для регистрации низкоэнергетических ядерных реакций (LENR), протекающих в реакторах ХЯС, а также управления LENR-процессами;

д) схему управления проектом;

е) список возможных проблем, сопряженных с реализацией «Атомного проекта-2», не включенных в настоящую статью.

Все технологические прорывы в истории нашей страны начинались с копирования соответствующих европейских или американских разработок. Петр Первый «прорубил окно в Европу», создав армию, флот и промышленность, необходимую для их оснащения и модернизации. Атомная и ракетно-космическая промышленность в Советском Союзе начинались с копирования «изделий» Манхеттенского проекта и разработок Вернера фон Брауна.

Энергетика LENR родилась в России полвека назад, когда на Западе о таких технологиях никто даже мечтать не смел. Объявление LENR и ХЯС лженаукой привело к тому, что «забугорные» конкуренты уже обогнали Россию на самом стратегически важном для обеспечения ее государственной безопасности направлении - энергетической безопасности.

Настало время бить в колокола, и собирать под знамена «Атомного проекта- 2» тех немногих российских ядерщиков, которые еще в состоянии продуктивно работать. Но для этого руководству страны потребуется проявить политическую волю. Грех будет, если упустим последний шанс.

А. А. Просвирнов ,

инженер, Москва

Ю. Л. Ратис ,

д. ф-м. н., профессор, Самара

Атомная энергетика – современная отрасль, предполагающая превращение ядерной энергии в электрическую и тепловую. Происходит этот процесс в атомных электростанциях.

Использование и популяризация атомной (ядерной) энергии вызывает дискуссии на протяжении более чем 65 лет. Споры начались даже не с момента, когда была запущена в эксплуатацию первая в мире атомная электростанция (Обнинская АЭС в 1954 году), а гораздо раньше. Во времена СССР существовала убежденность в том, что на службе людям используется «мирный атом», от которого не может быть негативных последствий. Катастрофа на Чернобыльской АЭС в 1986 год в Украине показала обратное, после нее было еще несколько масштабных катастроф.

Активисты призывают отказаться от ядерной энергетики ввиду ее опасности. И некоторые страны в планах своего развития на ближайшие годы такой пункт действительно внесли. Тем не менее, в общемировом контексте атомная энергетика играет огромную роль. Она помогает решить ряд актуальных проблем, которые иначе решить вряд ли возможно. Плюсы атомной энергетики очень значимы и существенны. Не надо забывать, что в обыденной жизни большинство из нас пользуется преимуществами того самого «мирного атома».

Ядерная энергетика – решение в борьбе с нехваткой энергии

Человечество требует все больше энергии. Согласно прогнозам, в течение последующих 50 лет ее будет использовано больше, чем за всю предшествующую историю существования рода людского. И энергии уже заметно не хватает. Серьезно учитывать альтернативные возобновляемые источники можно будет не раньше 2030 года. Ископаемые энергоресурсы пока еще активно добываются, но они имеют свойство заканчиваться. И однажды это произойдет - все доступные для разработки месторождения опустеют.

Уже сейчас есть серьезная проблема с выбросами газа после сжигания угля, нефти и газа на теплоэлектростанциях. Люди все больше ощущают последствия «парникового эффекта». Строительство «экологичных» гидроэлектростанций сталкивается с рядом ограничений.

Один из путей решения проблемы с нехваткой энергии – максимально использовать ядерную энергетику. Эта область науки и экономики молода и активно развивается. 34 страны эксплуатируют АЭС и еще некоторые закупают энергию, полученную на атомных электростанциях. Главная причина популярности АЭС – их чрезвычайная мощность. Атомные электростанции могут дать столько энергии, сколько нужно в условиях растущих потребностей. Есть и другие плюсы атомной энергетики.

Основные преимущества электростанций на ядерном топливе

Ввиду того, что было сказано выше, человечество заинтересовано в огромной, просто фантастической энергоемкости атомного топлива. 1 килограмм урана с обогащением до 4% после полного выгорания дает столько же энергии, сколько выделяется при сгорании 100 тонн высококлассного каменного угля либо 60 тонн нефти. Другие плюсы атомной энергетики:

  • Топливо можно использовать по второму кругу. Нуклид уран-235 при использовании топлива выгорает не на 100%. Его можно регенерировать и задействовать повторно. С остатками и отходами органического топлива это сделать не получится. Ведутся исследования по разработке замкнутого топливного цикла, при котором отходов урана может не быть вообще.
  • АЭС не дают парниковых выбросов. В отличие от других источников энергии, атомная энергетика развивается и не усугубляет парниковый эффект. Последний считается проблемой планетарного масштаба, так как провоцирует глобальное потепление и изменение климата. Считается, что атомные электростанции в Европе помогают избежать выбросов 700 млн. тонн СО2 в год, а в России – 210 млн. тонн.
  • Ядерная энергетика положительно влияет на развитие экономики. При возведении АЭС создаются рабочие места на самой станции и в смежных областях. Взаимосвязаны развитие атомной энергетики, количество научных исследований и экономический рост страны.

Другие аргументы «за» ядерное топливо

Это – главные плюсы атомной энергетики, из-за которых она востребована, развивается, совершенствуется и распространяется. Есть еще и дополнительные. Среди них:

  • Дешевизна получения энергии, экономичность по сравнению с углем и другим органическим топливом.
  • Высокая экологичность процесса и результата. Долгое время считалось, что «мирный атом» положит конец загрязнению окружающей среды. Города, расположенные вблизи АЭС, являются зелеными и экологически чистыми, и, если загрязняются, то от других факторов. При этом ТЭС создают около 25% всех вредных выбросов в атмосферу.
  • Экономия пространства и других природных ресурсов (АЭС размещается не небольшой площади).
  • Развитие технологий может решить проблему утилизации радиоактивных отходов. Значит, одним из минусов использования атома станет меньше.
  • Возобновляемые источники энергии, на которые возлагается большой комплекс надежд, могут оказаться неспособными избавить мир от энергетического кризиса. В этом случае будущее – за атомной энергетикой.
  • Совершенствование ядерных технологий может спровоцировать революцию в сфере безопасной энергетики.

Атомная энергия характеризуется прекрасной рентабельностью и малой себестоимостью. Расходы на перевозку топлива к месту его использования практически равны нулю. Особенно по сравнению с другими видами электростанций (например, на угольных транспортировка угля забирает до 50% затрат). Для АЭС не требуется постройка очистительных сооружений.

Но это не все плюсы атомной энергетики. Важен еще один момент – так называемый приближающийся энергетический голод. Залежи углеродного топлива истощаются. Зато запасов урана и прочих радиоактивных элементов в земной коре – много миллионов тонн. И, при имеющейся скорости потребления, этот ресурс можно назвать неисчерпаемым.

В двух словах, атом дает безопасную и дешевую энергию. В нормальных условиях она не загрязняет воздух, позволяет многим странам избавиться от внешней энергетической зависимости и развивать свою экономику. Эта область очень перспективна и многообещающа.

Атомная энергетика – панацея современной экономики?

Для России доля ядерной энергетики составляет около 19,3% всего энергобаланса страны. При этом показатель из года в год растет: с 15,9% до 19,3% в 2007-2018 годах. На территории РФ работает 11 АЭС, эксплуатируется 37 энергоблоков. В стране действует Энергетическая стратегия, рассчитанная до 2030 года. Она предусматривает наращивание производства электроэнергии на атомных электростанциях в четыре раза.

Ресурсы ядерной энергетики могут на 100% обеспечить мир энергоносителями. Никакой другой энергетической сфере такое не под силу. Именно поэтому возможности АЭС так активно используются. Но не стоит забывать, что у данной энергетической сферы есть и недостатки, вплоть до возможности глобального уничтожения жизни на Земле.

Что перевешивает – плюсы атомной энергетики или минусы – вполне очевидно. Атомные электростанции активно используются, новые энергоблоки строятся, заключаются контракты на возведение новых АЭС в будущем. Чтобы минимизировать негативные последствия, нужно руководствоваться правилами ядерной и радиационной безопасности, обучать персонал и проводить проверки. И это вполне реально. Поэтому можно сказать, что мир сделал свой выбор в пользу атома.

Сегодня мы поговорим об атомной энергетике, ее производительности по сравнению с газом, нефтью, тепловыми электростанциями, ГЭС, а также о том, что атомная энергия — великий потенциал Земли, об ее опасности и пользе, ведь сегодня в мире, особенно после ряда мировых катастроф, связанных с атомными станциями и войной, ведутся споры о нужности атомных реакторов.

Итак, сначала, что такое атомная энергетика.

«Ядерная энергетика (Атомная энергетика) - это отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии.

Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер плутония-239 или урана-235. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло.

Хотя в любой области энергетики первичным источником является ядерная энергия (например, энергия солнечных ядерных реакций в гидроэлектростанциях и электростанциях, работающих на органическом топливе, энергия радиоактивного распада в геотермальных электростанциях), к ядерной энергетике относится лишь использование управляемых реакций в ядерных реакторах».

АЭС - атомные электростанции производят электрическую или тепловую энергию с помощью ядерного реактора. Официально доля производимого ныне электричества с помощью АЭС снизилась за последнее десятилетие с 17-18 процентов до чуть более чем 10, по другим источникам - будущее за атомной энергетикой, и ныне доля энергии АЭС возрастает, в потенциале строятся новые АЭС, в том числе в России. Пока АЭС в большей части не рассчитаны на удовлетворение тепловых запросов населения (лишь в нескольких странах), атомная энергия используется для атомных подводных лодок, ледоколах, у США в проекте создание ядерного двигателя для космического корабля, атомного танка. Страны, активно использующие атомную энергию для покрытия нужд населения - США, Франция, Япония, при этом атомные станции во Франции покрывают более 70 % потребности страны в электроэнергии.

Ядерная энергетика имеет плюсом то, что при малых потреблениях ресурсов АЭС выдают огромный потенциал энергии.

Как бы нам, простым смертным, не казалось, что ядерная энергетика это далеко и неправда, на самом деле — это сегодня один из самых насущных вопросов, обсуждаемых в мире на уровне глобальных технологий, поскольку сфера обеспечения планеты энергией встает все острее, и самым перспективным направлением является как раз ядерная энергетика, почему — объясним в статье.

Ядерный цикл — основа ядерной энергетики, его этапы включают добычу урановой руды, ее измельчение, преобразование отделенного диоксида урана, переработка урана в высоко концентрированный и особого вида для получения тепло выделительных элементов для введения в зону ядерного реактора, затем сбор отработанного топлива, охлаждение и захоронение в специальных «кладбищах ядерных отходов». Вообще - самое опасное в использовании ядерного топлива - это добыча урана и захоронение ядерного топлива, работа АЭС не оказывает особого вреда окружающей среде.

Работающий атомный реактор, вышедший из строя может остывать (внимание!!) 4,5 года!

Первые попытки осуществления цепной реакции ядерного распада были произведены в университете Чикаго, уран в качестве топлива и графит в качестве замедлителя - в конце 1942 года.

На планете минимум пятая часть всей энергии вырабатывается атомными станциями.

«Согласно отчёту Международного агентства по атомной энергии (МАГАТЭ), на конец 2016 года насчитывалось 450 действующих ядерных энергетических (то есть производящих утилизируемую электрическую и/или тепловую энергию) реакторов в 31 стране мира (кроме энергетических, существуют также исследовательские и некоторые другие).

Примерно половина мирового производства электроэнергии на АЭС приходится на две страны - США и Францию. США на АЭС производят только 1/8 своей электроэнергии, однако это составляет около 20 % мирового производства».

США, Франция - самые производительные страны по ядерной энергетике, АЭС Франции обеспечивают более двух трети тепловых запросов страны.

Абсолютным лидером по использованию ядерной энергии являлась Литва. Единственная Игналинская АЭС, расположенная на её территории, вырабатывала электрической энергии больше, чем потребляла вся республика (например, в 2003 году в Литве всего было выработано 19,2 млрд кВт⋅ч, из них - 15,5 Игналинской АЭС). Обладая её избытком (а в Литве есть и другие электростанции), «лишнюю» энергию отправляли на экспорт».

В России (4-я страна по количеству атомных блоков, после Японии, США и Франции) стоимость ядерной энергии одна из самых низких, всего 95 коп (данные 2015-го года) за киловатт/час, и относительная безопасность с экологической точки зрения: нет выбросов в атмосферу, только водяной пар. Да и в целом АЭС довольно безопасный источник энергии, НО! При безопасной работе! Как говорят специалисты - у любой технологии есть свои минусы… Конечно, это спорное утверждение, что тысячи жертв и миллионы пострадавших - это просто минусы технологий, однако если посчитать жертв современного прогресса в других областях - картина будет нелестная.

Давайте обсудим пользу и опасность атомной энергетики. Очень странно, по мнению многих, обсуждать пользу атомной энергии.. особенно после таких событий как взрыв на Чернобыльской АЭС, Фукусима, уничтожение Хиросимы и Нагасаки… Однако все, что опасно в больших дозах, либо при неправильном использовании, либо при сбое вызывает катастрофы — при правильном использовании, в мирно идущем ритме очень часто вполне безопасно. Если разобрать структуру и механизм ядерных бомб, причину, проблему взрыва на Чернобыльской АЭС, то можно понять, что это сравнимо с ядом, который в малых количествах может быть лекарством, а в больших и при соединении с другими ядами - смертелен.

Итак, основные доводы тех, кто против атомной энергетики - что отходы после переработки ядерного топлива сложно утилизировать, они приносят много вреда природе, также вышедшие из строя и действующие АЭС могут служить оружием массового поражения в случае войны или в случае аварии.

«Вместе с тем, выступающая за продвижение ядерной энергетики Всемирная ядерная ассоциация опубликовала в 2011 году данные, согласно которым гигаватт*год электроэнергии, произведенной на угольных электростанциях, в среднем (учитывая всю производственную цепочку) обходится в 342 человеческих жертвы, на газовых - в 85, на гидростанциях - в 885, тогда как на атомных - всего в 8».

Радиоактивные отходы опасны своим вредным излучением и тем, что период полураспада у них очень долгий, соответственно, они долго излучают радиацию в огромных дозах. Для захоронений отходов используют специальные места, сегодня в России наиболее актуален вопрос, где делать «кладбище» радиоактивных отходов. Подобное захоронение планировалось сделать в Красноярском крае. Сегодня в России несколько захоронений подобного типа, на Урале например, там же и получают обогащенный уран (40 % мирового производства!!).

Хоронят в герметизированных бочках, каждый кг под строгой отчетностью.

Самые безопасные атомные станции строит именно Россия. После трагедии с Фукусимой мир учел ошибки АЭС, строительство сегодняшних АЭС в основном предусматривают более безопасную конструкцию, чем построенные ранее. Российские АЭС наиболее безопасные из всех мировых, как раз в «наших» АЭС учтены все ошибки, допущенные в случае с Фукусимой. В проекте даже АЭС, которая выдержит 9-бальное землетрясение, цунами.

В России сегодня около 10 АЭС и столько же строящихся.

Россия на 5-м месте по добычи урана, но по запасам на 2-м. Основное количество урана добывают в Краснокаменске, в глубоких шахтах. Опасен не столько сам уран, сколько радон - газ, образующийся при добыче урана. Очень много горняков, большую часть жизни занимавшихся добычей урана, умирают от рака, не доживая до пенсионного возраста (не верьте фильмам где говоря что все здоровые и живые, поскольку это исключение), люди в рядом находящихся деревнях также рано умирают или муаются от болезней.

Среди экологов, ученых ведутся ожесточенные споры о том, безопасна ли атомная энергия. Есть мнения абсолютно разные, такая радикальность вызвана в том числе и тем, что атомная энергия еще сравнительно молодая ниша мировых технологий, потому достаточных исследований, подтверждающих опасность или безопасность — нет. Но из того, что мы сегодня имеем, уже можно сделать вывод о сравнительной безопасности и пользе атомной энергетике.

Насчет экономичности - все сомнительно с точки зрения тех, кто против атомной энергетики.

Сегодня для поддержания работы АЭС требуется все больше затрат, в частности для нормальной безопасной деятельности, для добычи топлива и захоронения отходов. А сами АЭС, как мы уже выше писали, — могут быть потенциальным средством массового поражения населения, оружием.

Чернобыль, Фукусима, хоть и редкость, но имели место быть, а это значит, что есть шанс повторения.

Радиоактивные захоронения еще сохраняют радиацию много тысяч лет!!!

Вырабатываемые пары в результате работы АЭС создают мощный парниковый эффект, который при накапливании оказывает разрушительное влияние на природу.

ГЭС, например, ничуть не безопаснее, как утверждают специалисты, при прорыве плотины случаются не менее серьезные катастрофы, при использовании иных видов топлива также страдает природа, и в разы больше чем при ядерной энергетики.

Теперь о плюсах. Вывод о пользе атомной энергетики можно сделать, во-первых, из-за экономической выгодности, рентабельности (уже указанные выше «тарифы», где в России например самое дешевая энергия АЭС), во-вторых, из-за сравнительной безопасности для окружающей среды, ведь при правильной работе АЭС в атмосферу выделяется только пар, есть проблемы только с захоронением отходов.

1 гр урана даёт столько же энергии, сколько сжигание 1000 кг нефти или даже больше.

Чернобыль - это исключение и человеческий фактор, а вот миллион тонн угля - несколько человеческих жизней, при этом энергии от сгорания угля и нефти получается намного меньше, чем от ядерного топлива. Радиационный фон от сжигания угля, нефти соизмерим с той же Фукусимой, только когда катастрофа - это сразу и много, а постепенный вред не так заметен, однако более серьезен. А сколько природы губится вырубленными карьерами и когда добывается сырье, терриконами.

По сведению ряда экологов — отсутствие радиации иногда вреднее чем ее наличие и даже иногда избыток. Почему?

Радиоактивные частицы окружают нас кругом, от рождения до смерти. И радиация «в рамках» тренирует иммунитет клеток к защите от радиации, если человек будет полностью лишен контакта с радиоактивной средой - то может умереть от первого же контакта с ней впоследствии. И атомные станции, согласно доводам ученых, излучают лишь малую часть вредной радиации. Отсутствие радиации не менее опасно чем ее избыток - ка считают некоторые экологи.

Придерживающиеся же обратной точки зрения о том что атомная энергия это зло, говорят о небезопасности атомных реакторов и альтернативе иных видов энергии — солнце, ветре.

Дискуссии на тему добра и зла атомной энергии даже называются громко: «принесет ли мир мирный атом?». И эти дискуссии на сегодняшний день бесконечны. Но можно сказать главное - иного выхода кроме как развивать атомную энергетику во всем мире у людей нет, поскольку объем потребляемых ресурсов энергии и тепла все больше возрастает, и ни одна другая форма добычи и выработки энергии не способна покрыть запросы человечества лучше чем ядерная энергетика.

Нас становится неимоверно много, это уже не знают только живущие в далеких глубинках, планета исчерпала все возможные ресурсы для поддержания нормального уровня жизни человечества. Даже исходя из данных приведенных в статье - атомная энергетика самая перспективная отрасль, способная при меньшем вреде для окружающей среды и затратах дать намного больший объем энергии, ее производительность выше других известных источников энергии.

В течение следующих 50 лет человечество будет потреблять энергии больше, чем было израсходовано за всю предыдущую историю. Сделанные ранее прогнозы о темпах роста энергопотребления и развитии новых энерготехнологий не оправдались: уровень потребления растет намного быстрее, а новые источники энергии заработают в промышленном масштабе и по конкурентоспособным ценам не ранее 2030 года. Все острее встает проблема нехватки ископаемых энергоресурсов. Возможности строительства новых гидроэлектростанций тоже весьма ограниченны. Не стоит забывать и о борьбе с «парниковым эффектом», накладывающей ограничения на сжигание нефти, газа и угля на тепловых электростанциях (ТЭС).

Решением проблемы может стать активное развитие ядерной энергетики, одной из самых молодых и динамично развивающихся отраслей глобальной экономики. Все большее количество стран сегодня приходят к необходимости начала освоения мирного атома.

В чем преимущества ядерной энергетики?

Огромная энергоемкость

1 килограмм урана с обогащением до 4%, используемого в ядерном топливе, при полном выгорании выделяет энергию, эквивалентную сжиганию примерно 100 тонн высококачественного каменного угля или 60 тонн нефти.

Повторное использование

Расщепляющийся материал (уран-235) выгорает в ядерном топливе не полностью и может быть использован снова после регенерации (в отличие от золы и шлаков органического топлива). В перспективе возможен полный переход на замкнутый топливный цикл, что означает полное отсутствие отходов.

Снижение «парникового эффекта

Интенсивное развитие ядерной энергетики можно считать одним из средств борьбы с глобальным потеплением. Ежегодно атомные станции в Европе позволяют избежать эмиссии 700 миллионов тонн СО2, а в Японии - 270 миллионов тонн СO2. Действующие АЭС России ежегодно предотвращают выброс в атмосферу 210 млн тонн углекислого газа. По этому показателю Россия находится на четвертом месте в мире.

Развитие экономики

Строительство АЭС обеспечивает экономический рост, появление новых рабочих мест: 1 рабочее место при сооружении АЭС создает более 10 рабочих мест в смежных отраслях. Развитие атомной энергетики способствует росту научных исследований и интеллектуального потенциала страны.

Интерактивное приложение "Сравнение источников генерации электроэнергии"

«К примеру, вы хотите увеличить энергетические мощности вашей страны. Какой источник генерации электроэнергии выбрать? Давайте сравним угольную генерацию, гидроэлектростанцию, ветровую и солнечную электростанции, а также определим основные преимущества атомной энергетики. Запустите работу приложения и определите для себя оптимальный источник энергии для строительства».

Запустите видео, демонстрирующее основные возможности интерактивного приложения "Сравнение источников генерации электроэнергии":

Для работы с приложением:
1. Скачайте приложение по ссылке ниже.
2. Найдите с помощью файлового менеджера на своем компьютере исполняемый файл "ros-atom.exe" и запустите его.
3. Для корректного отображения изображения, установите расширение экрана 1920 х 1080.
4. Нажмите «Play!» для запуска приложения.

Важно! Для корректной работы приложения, пожалуйста, используйте компьютер на базе процессора i7, с операционной системой Windows 7 или 10х64, оперативной памятью не ниже 8 Gb, видеокартой не менее GTX77 и 128 Gb SSD.

В то время, как изменение климата и его негативные последствия привлекают к себе все больше внимания в СМИ и умах политиков, атомная промышленность пытается использовать климатическую проблему, как предлог для получения новых субсидий.

Для этого требуется признание атомной энергетики международным сообществом как технологии, способной внести большой вклад в предотвращение изменения климата. На уровне ООН попытки атомной промышленности получить такой статус до сих пор терпели неудачу.

Ясно, что проблему изменения климата не удастся решить с помощью какой-то одной технологии - нужен многосторонний подход. Атомная промышленность настаивает на том, что АЭС должны быть «частью решения» и что без них обойтись не получится, так как речь идет о снижении выбросов углекислого газа и прочих парниковых газов в атмосферу на глобальном уровне, а ядерные реакторы почти не производят таких выбросов.

Впрочем, уже в самом начале этой дискуссии кроется загвоздка под названием «смотря, как считать». Если проанализировать полный топливный цикл (а не работу отдельной энергетической установки), включающий в себя стадии добычи ископаемого топлива (сюда попадает в числе прочего и уран), его обработки, использования, утилизации отходов, окажется, что «мирный атом» — не самый удачный выбор. В полном топливном цикле использование атомной энергии приводит примерно к такому же количеству выбросов, как в газовом цикле, существенно уступая по чистоте ветроэнергетике и гидроэнергетике (Oekoinstitute, 1997).

Согласно подсчетам экспертов, разница между сегодняшним уровнем глобальных выбросов и тем, который нужно будет достичь в 2050 г. составляет 25-40 Гт CO2.

Наиболее реалистичные расчеты показывают, что снижения выбросов можно достичь в следующих секторах:
. приблизительно 5 Гт CO2 от увеличения производства ядерной энергии, если количество атомных станций увеличится в три раза;
. приблизительно 4 Гт CO2 от увеличения энергетической эффективности для зданий;
. приблизительно 5 Гт CO2 от увеличения энергоэффективности в промышленности;
. приблизительно 7 Гт CO2 от увеличения энергоэффективности в транспортном секторе;
. приблизительно 2 Гт CO2 от увеличения энергоэффективности в энергетическом секторе (кроме варианта смены вида топлива);
. приблизительно 3,6 Гт CO2 от перехода с угля на газ в энергетическом секторе;
. приблизительно 15 Гт CO2 (или больше) от возобновляемой энергетики (электричество и тепло);
. между 4 и 10 Гт CO2 за счет CCS (технология, позволяющая улавливать выбросы и затем хранить их в специальных хранилищах, не позволяя поступать в атмосферу).
(«Nuclear power and climate change», Felix Chr. Matthes, 2005)

Таким образом, при комбинировании вышеперечисленных технологий к 2050 году удалось бы сократить выбросы на 45-55 Гт CO2. При таком подходе увеличение количества АЭС в три раза, как это предлагается в некоторых исследования атомной промышленности, не просто не обязательно - без него можно обойтись.

Необходимо обратить внимание еще на несколько важных аспектов, касающихся совместимости развития атомной энергетики и других технологий, проработки различных сценариев снижения выбросов, а также негативных сторон развития атомной энергетики в целом:
. Глобальное потепление и атомная энергетика представляют из себя риски разного вида, однако они сравнимы. Хотя некоторая опасность для здоровья и экосистем может возникнуть при любом варианте, ни одна другая технология не представляет из себя такой опасности для здоровья, окружающей среды и социально-экономической обстановки, как атомная энергетика.
. Применение ядерной энергии для снижения уровня выбросов потребует масштабного развития всех элементов ядерно-топливного цикла (от горной промышленности до захоронения отходов). Здесь много неясностей и прежде всего — отсутствие безопасной технологии захоронения ядерных отходов и полное отсутствие понимания, когда она появится и появится ли вообще.
. Условия внедрения технологий возобновляемой энергетики входит в противоречие с условиями, необходимыми для масштабного развития атомной энергетики. Если для первого варианта нужны гибкость и децентрализация энергосистем, возможность поставлять энергию с интервалами, то для второго — централизованная структура энергосистемы, низкая гибкость и как можно более мощные единицы производства энергии.
. Единственный адаптированный к сегодняшней энергосистеме сценарий включает в себя переход с угля на газ и повышение эффективности электростанций, включая комбинированное производство тепла и энергии. Хотя вклад этих технологий на сегодня ограничен, эти два варианта будут играть ключевую роль уже в ближайшем будущем из-за своего большого потенциала.
. Ключевые варианты уменьшения выбросов в среднесрочной перспективе (возобновляемая энергия, CCS) неконкурентоспособны по сравнению с атомной энергией, если в ее цену по-прежнему не будут включены расходы на утилизацию радиоактивных отходов, демонтаж старых установок и др. Дальнейшее развитие атомной энергетики потребует огромных финансовых вливаний для того, чтобы развивать бридерные реакторы и переработку отработавшего ядерного топлива, что серьезно увеличит себестоимость «мирного атома». Сейчас масштабы этого увеличения спрогнозировать очень трудно, однако ясно, что они будут крупными. Следовательно в сценарии снижения выбросов с помошью атомной энергетики заложены весьма большие скрытые затраты.
. АЭС уязвимы перед изменением климата, происходящим на планете, сами по себе. Крупные наводнения могут привести к прекращению работы таких станций на неопределенных срок, особенно в случаях, когда станции находятся в береговой зоне. Кроме того, таяние вечной мерзлоты создает еще одну угрозу для атомных станций, функционирующих в соответствующих широтах. Например, уже сейчас российскими специалистами прогнозируются серьезные проблемы в случае с Билибинской АЭС на Чукотке.
. Если в будущем произойдут одна или несколько крупных аварий на АЭС, это приведет к отказу от дальнейшего развития «мирного атома». В случае, если при сокращении выбросов делается ставка на эту технологию, для борьбы с изменением климата такой поворот будет катастрофой.

Необходимо выработать наиболее безопасный подход к сокращению выбросов с учетом всех этих обстоятельств на короткий, средний и долгосрочный периоды. Если не использовать в рамках этого подхода атомную энергетику, то в течение 20-30 лет необходимо перейти с угля на газ и повысить энергоэффективность, в том числе и в энергетической промышленности.

Этих усилий должно хватить на тот период времени, пока цена на возобновляемую энергию не снизится. Но в случае, если атомная энергетика будет включена в число технологий, используемых для борьбы с изменением климата (уменьшением выбросов углекислого газа), такой подход будет крайне уязвим. Ставка на «мирный атом», не позволяющий развиваться новым технологиям, может оказаться неверным решением в длительной перспективе, так как АЭС не позволят решить климатическую проблему полностью, но увеличат количество других весьма серьезных проблем.