Электроэнергетика отрасли и чем занимается. Энергетическая промышленность. Основные технологические процессы в электроэнергетике

Электроэнергетика отрасли и чем занимается. Энергетическая промышленность. Основные технологические процессы в электроэнергетике

Закон Украины «О мерах законодательного обеспечения реформирования пенсионной системы» от 08.07.2011 № 3668-VI (далее – Закон), который вносит существенные изменения в пенсионную систему Украины, вступит в силу 01.10.2011г. (за исключением положений, которые касаются учета средней заработной платы за три последних года для определения скорректированной заработной платы при назначении пенсии (абз. 11 пп.11 и абз. 138 пп.17 п.6 раздела II), которые вступят в силу с 01.01.2012г.).


Главные изменения, которые вносятся этим Законом,касаются повышения пенсионного возраста и страхового стажа, необходимого дляназначения пенсии. Так, предусматривается повышениепенсионного возраста :

  • для женщин – до60 лет;
  • для мужчин,работающих на государственной службе, – до 62 лет с возможностью заниматьдолжность до 65 лет;

повышениестрахового стажа :

  • с 20 до 30лет – для женщин;
  • с 25 до 35лет – для мужчин;
  • с 5 до 15 лет– для инвалидов.

При этом указанное повышение пенсионного возрастабудет происходить постепенно путем ежегодного увеличения на 6 месяцев ежегодно:

  • для женщин,начиная с 01.01.2012г.;
  • для мужчин,работающих на государственной службе, – с 01.01.2013г.

Так, для женщин, родившихся до 01.10.1956 г.сохраняется пенсионный возраст 55 лет, женщины, родившиеся после 01.04.1961г. смогутуйти на пенсию уже не в 55, а в 60 лет, а для тех, кто родился в период с 01.10.1956г.по 01.04.1961г. повышение пенсионного возраста будет поэтапным. Например, для лиц,рожденных с 01.10.1956г. по 31.03.1957г., пенсионный возраст будетповышен до 55,5 лет и т.д.

Аналогично будет проводиться повышение пенсионноговозраста для мужчин – государственных служащих. Так, для лиц, родившихся до31.12.1952г. – пенсионный возраст все еще будет равен 60 годам, а для лиц,родившихся после 31.12.1955г. пенсионный возраст будет составлять 62 года. Длявсех, кто родился в периоде с 01.01.1953г. по 01.01.1956г., – повешениепенсионного возраста будет проводиться постепенно, как и для женщин.

Минимальныйразмер пенсии по возрасту приналичии требуемого страхового стажа устанавливается в размере прожиточного минимума для лиц,утративших трудоспособность. Максимальныйее размер не может превышать десятипрожиточных минимумов , установленных для лиц, утративших трудоспособность. Позитивныммоментом этого нововведения является то, что ограничения максимального размера пенсиине распространяется на пенсионеров, которым была назначена пенсия до вступленияв силу норм этого Закона. Однако, для лиц, которые только собираются выйти напенсию и уровень заработной платы которых значительно превышает максимальныйуровень, установленное ограничение является отнюдь не благоприятным. На нашвзгляд, скрасить негативные последствия таких нововведений сможет лишь открытиечастного пенсионного вклада в одном из банков, который сможет обеспечить хотябы частичную компенсацию потерь уровня доходов.

Отметим, что указанные выше ограничения некоснулись государственных служащих, а это значит, что для них размер пенсиипо-прежнему «привязан» к уровню заработной платы. Однако, Закон все же внеснезначительные «корректировки» в размер пенсии и для них. Так, пенсия будетназначаться в размере 80% (а не 90%, как это было ранее) суммы заработнойплаты, с которой был уплачен единый взнос на общеобязательное государственноесоциальное страхование, а до 01.01.2011г. – страховые взносы наобщеобязательное государственное пенсионное страхование.

Еще одним нововведением Закона является возможностьповышения размера пенсии для лиц, достигших пенсионного возраста. Так, вслучае, если лицо после достижения такого возраста выразило желание продолжать работатьи получать пенсию с более позднего возраста, пенсионное пособие будет рассчитыватьсяс учетом страхового стажа на день обращения для его назначения с учетомповышения размера на следующий процент :

  • на 0,5% – закаждый полный месяц страхового стажа после достижения пенсионного возраста вслучае отсрочки выхода на пенсию сроком до 60 месяцев;
  • на 0,75% – закаждый полный месяц страхового стажа после достижения пенсионного возраста вслучае отсрочки выхода на пенсию на срок свыше 60 месяцев.

Таким образом, возможность повышения размерапенсии предусмотрено только для тех лиц, которые продолжают вести трудовуюдеятельность и не оформляют пенсионное пособие по возрасту. Поступать такимобразом, на наш взгляд, целесообразно тем лицам, у которых размер указанногопособия на моментдостиженияпенсионного возраста не превышает максимально допустимого размера и, продолжаяработать, они смогут повысить уровень пенсии.

Следует также отметить, что в Законе нет четкихнорм относительно получения работающими пенсионерами ипенсии, и заработной платы одновременно. На сегодняшний день, остается лишьожидать урегулирования данного вопроса путем внесения соответствующих измененийв действующее законодательство.

Лидирующее положение теплоэнергетики является исторически сложившейся и экономически оправданной закономерностью развития российской энергетики.

Тепловые электростанции (ТЭС), действующие на территории России, можно классифицировать по следующим признакам:

§ по источникам используемой энергии -- органическое топливо, геотермальная энергия, солнечная энергия;

§ по виду выдаваемой энергии -- конденсационные, теплофикационные;

§ по использованию установленной электрической мощности и участию ТЭС в покрытии графика электрической нагрузки -- базовые (не менее 5000 ч использования установленной электрической мощности в году), полупиковые или маневренные (соответственно 3000 и 4000 ч в году), пиковые (менее 1500--2000 ч в году).

В свою очередь, тепловые электростанции, работающие на органическом топливе, различаются по технологическому признаку:

§ паротурбинные (с паросиловыми установками на всех видах органического топлива: угле, мазуте, газе, торфе, сланцах, дровах и древесных отходах, продуктах энергетической переработки топлива и т. д.);

§ дизельные;

§ газотурбинные;

§ парогазовые.

Наибольшее развитие и распространение в России получили тепловые электростанции общего пользования, работающие на органическом топливе (газ, уголь), преимущественно паротурбинные.

Самой большой ТЭС на территории России является крупнейшая на Евразийском континенте Сургутская ГРЭС-2 (5600 МВт), работающая на природном газе (ГРЭС -- аббревиатура, сохранившаяся с советских времен, означает государственную районную электростанцию). Из электростанций, работающих на угле, наибольшая установленная мощность у Рефтинской ГРЭС (3800 МВт). К крупнейшим российским ТЭС относятся также Сургутская ГРЭС-1 и Костромская ГРЭС, мощностью свыше 3 тыс. МВт каждая.

В процессе реформы отрасли крупнейшие тепловые электростанции России были объединены в оптовые генерирующие компании (ОГК) и территориальные генерирующие компании (ТГК) .

В настоящий момент основной задачей развития тепловой генерации является обеспечение технического перевооружения и реконструкции действующих электростанций, а также ввод новых генерирующих мощностей с использованием передовых технологий в производстве электроэнергии.

Гидроэнергетика

Гидроэнергетика предоставляет системные услуги (частоту, мощность) и является ключевым элементом обеспечения системной надежности Единой Энергосистемы страны, располагая более 90 % резерва регулировочной мощности. Из всех существующих типов электростанций именно ГЭС являются наиболее маневренными и способны при необходимости быстро существенно увеличить объемы выработки, покрывая пиковые нагрузки.

У России большой гидроэнергетический потенциал, что подразумевает значительные возможности развития отечественной гидроэнергетики. На территории России сосредоточено около 9 % мировых запасов гидроресурсов. По обеспеченности гидроэнергетическими ресурсами Россия занимает второе место в мире, опережая США, Бразилию, Канаду. В настоящее время общий теоретический гидроэнергопотенциал России определён в 2900 млрд кВт*ч годовой выработки электроэнергии или 170 тыс. кВт*ч на 1 кв. км территории. Однако сейчас освоено лишь 20 % этого потенциала. Одним из препятствий развития гидроэнергетики является удалённость основной части потенциала, сконцентрированной в центральной и восточной Сибири и на Дальнем Востоке, от основных потребителей электроэнергии.

Рисунок 1 Производство электроэнергии гидроэлектростанциями России (в млрд кВт ч) и мощность гидроэлектростанций России (в ГВт) в 1991--2010 годах

Выработка электроэнергии российскими ГЭС обеспечивает ежегодную экономию 50 млн тонн условного топлива, потенциал экономии составляет 250 млн тонн; позволяет снижать выбросы СО2 в атмосферу на величину до 60 млн тонн в год, что обеспечивает России практически неограниченный потенциал прироста мощностей энергетики в условиях жёстких требований по ограничению выбросов парниковых газов. Кроме своего прямого назначения -- производства электроэнергии с использованием возобновляемых ресурсов -- гидроэнергетика дополнительно решает ряд важнейших для общества и государства задач: создание систем питьевого и промышленного водоснабжения, развитие судоходства, создание ирригационных систем в интересах сельского хозяйства, рыборазведение, регулирование стока рек, позволяющее осуществлять борьбу с паводками и наводнениями, обеспечивая безопасность населения.

В настоящее время на территории России работают 102 гидроэлектростанции мощностью свыше 100 МВт. Общая установленная мощность гидроагрегатов на ГЭС в России составляет примерно 46 ГВт (5 место в мире). В 2011 году российскими гидроэлектростанциями выработано 153 млрд кВт*ч электроэнергии. В общем объёме производства электроэнергии в России доля ГЭС в 2011 году составила 15,2 % .

В ходе реформы электроэнергетики была создана федеральная гидрогенерирующая компания ОАО «ГидроОГК» (текущее название -- ОАО «РусГидро»), которая объединила основную часть гидроэнергетических активов страны. Сегодня компания управляет 68 объектами возобновляемой энергетики, в том числе 9 станциями Волжско-Камского каскада общей установленной мощностью более 10,2 ГВт, первенцем большой гидроэнергетики на Дальнем Востоке -- Зейской ГЭС (1 330 МВт), Бурейской ГЭС (2 010 МВт), Новосибирской ГЭС (455 МВт) и несколькими десятками гидростанций на Северном Кавказе, в том числе Кашхатау ГЭС (65,1 МВт), введённой в эксплуатацию в Кабардино-Балкарской Республике в конце 2010 года. Также в состав РусГидро входят геотермальные станции на Камчатке и высокоманевренные мощности Загорской гидроаккумулирующей электростанции (ГАЭС) в Московской области, используемые для выравнивания суточной неравномерности графика электрической нагрузки в ОЭС Центра.

До недавнего времени крупнейшей российской гидроэлектростанцией считалась Саяно-Шушенская ГЭС им. П. С. Непорожнего мощностью 6721 МВт (Хакасия). Однако после аварии 17 августа 2009 года её мощности частично выбыли из строя. В настоящее время полным ходом ведутся восстановительные работы, которые предполагается завершить полностью к 2014 году. 24 февраля 2010 года состоялось включение в сеть под нагрузку гидроагрегата № 6 мощностью 640 МВт, в декабре 2011 года был введён в работу гидроагрегат № 1. На сегодняшний день в работе находятся ГА № 1, 3, 4, 5 с суммарной мощностью 2560 МВт. Вторая по установленной мощности гидроэлектростанция России -- Красноярская ГЭС.

Перспективное развитие гидроэнергетики России связывают с освоением потенциала рек Северного Кавказа (строятся Зарамагские, Кашхатау, Гоцатлинская ГЭС, Зеленчукская ГЭС-ГАЭС; в планах -- вторая очередь Ирганайской ГЭС, Агвалинская ГЭС, развитие Кубанского каскада и Сочинских ГЭС, а также развитие малой гидроэнергетики в Северной Осетии и Дагестане), Сибири (достройка Богучанской, Вилюйской-III и Усть-Среднеканской ГЭС, проектирование Южно-Якутского ГЭК и Эвенкийской ГЭС), дальнейшим развитием гидроэнергетического комплекса в центре и на севере Европейской части России, в Приволжье, строительством выравнивающих мощностей в основных потребляющих регионах (в частности -- строительство Ленинградской и Загорской ГАЭС-2).

Атомная энергетика. Россия обладает технологией ядерной электроэнергетики полного цикла от добычи урановых руд до выработки электроэнергии. На сегодняшний день в России эксплуатируется 10 атомных электростанций (АЭС) -- в общей сложности 33 энергоблока установленной мощностью 23,2 ГВт, которые вырабатывают около 17 % всего производимого электричества. В стадии строительства -- ещё 5 АЭС .

Широкое развитие атомная энергетика получила в европейской части России (30 %) и на Северо-Западе (37 % от общего объёма выработки электроэнергии).


Рисунок 2 Производство электроэнергии АЭС России (в млрд кВт ч) и мощность АЭС России (в ГВт) в 1991--2010 годах

электроэнергетика пространственный альтернативный отрасль

В 2011 году атомными электростанциями выработано рекордное за всю историю отрасли количество электроэнергии -- 173 млрд кВт*ч, что составило около 1,5 % прироста по сравнению с 2010 годом. В декабре 2007 года в соответствии с указом президента России В. В. Путина была образована Государственная корпорация по атомной энергии «Росатом», которая управляет всеми ядерными активами России, включая как гражданскую часть атомной отрасли, так и ядерный оружейный комплекс. На неё также возложены задачи по выполнению международных обязательств России в области мирного использования атомной энергии и режима нераспространения ядерных материалов.

Оператор российских АЭС -- ОАО «Концерн Росэнергоатом» -- является второй в Европе энергетической компанией по объёму атомной генерации. АЭС России вносят заметный вклад в борьбу с глобальным потеплением. Благодаря их работе ежегодно предотвращается выброс в атмосферу 210 млн тонн углекислого газа. Приоритетом эксплуатации АЭС является безопасность. С 2004 года на российских АЭС не зафиксировано ни одного серьёзного нарушения безопасности, классифицируемых по международной шкале ИНЕС выше нулевого (минимального) уровня. Важной задачей в сфере эксплуатации российских АЭС является повышение коэффициента использования установленной мощности (КИУМ) уже работающих станций. Планируется, что в результате выполнения программы повышения КИУМ ОАО «Концерн Росэнергоатом», рассчитанной до 2015 года, будет получен эффект, равноценный вводу в эксплуатацию четырёх новых атомных энергоблоков (эквивалент 4,5 ГВт установленной мощности).

Геотермальная энергетика

Одним из потенциальных направлений развития электроэнергетики в России является геотермальная энергетика. В настоящее время в России разведано 56 месторождений термальных вод с потенциалом, превышающим 300 тыс. м/сутки. На 20 месторождениях ведется промышленная эксплуатация, среди них: Паратунское (Камчатка), Казьминское и Черкесское (Карачаево-Черкессия и Ставропольский край), Кизлярское и Махачкалинское (Дагестан), Мостовское и Вознесенское (Краснодарский край). При этом суммарный электроэнергетический потенциал пароводных терм, который оценивается в 1 ГВт рабочей электрической мощности, реализован только в размере чуть более 80 МВт установленной мощности. Все действующие российские геотермальные электростанции сегодня расположены на территории Камчатки и Курил .

До реформы 2008 года большая часть энергетического комплекса Российской Федерации находилась под управлением РАО «ЕЭС России». Эта компания была создана в 1992 году и к началу «двухтысячных» годов стала практически монополистом российского рынка генерации и энерготранспортировки.

Реформирование отрасли было связано с тем, что РАО «ЕЭС России» неоднократно подвергались критике за неправильное распределение инвестиций, в результате чего значительно выросла аварийность на объектах электроэнергетики. Одной из причин расформирования послужила авария в энергосистеме 25 мая 2005 года в Москве, в результате которой была парализована деятельность многих предприятий, коммерческих и государственных организаций, остановлена работа метрополитена. А кроме этого, РАО «ЕЭС России» часто обвиняли в том, что организация продает электроэнергию по заведомо завышенным тарифам с целью увеличения собственной прибыли.

В результате расформирования РАО «ЕЭС России» была ликвидирована и созданы естественные государственные монополии в сетевой, распределительной и диспетчерской деятельности. Частный был задействован в сфере генерации и сбыта электроэнергии.

На сегодняшний день структура энергетического комплекса выглядит следующим образом:

  • ОАО «Системный оператор Единой энергетической системы» (СО ЕЭС) – осуществляет централизованное оперативно-диспетчерское управление Единой энергетической системой РФ.
  • Некоммерческое партнерство «Совет рынка по организации эффективной системы оптовой и розничной торговли электрической энергией и мощностью» - объединяет продавцов и покупателей оптового рынка электроэнергии.
  • Компании генерирующие электроэнергию. В том числе государственные - «РусГидро», «Росэнергоатом», управляемые совместно государством и частным капиталом ОГК (оптовые генерирующие компании) и ТГК (территориальные генерирующие компании), а также представляющие полностью частный капитал.
  • ОАО «Российские сети» - управление распределительным сетевым комплексом.
  • Энергосбытовые компании. В том числе ОАО «Интер РАО ЕЭС» - компания владельцами которой являются государственные структуры и организации. «Интер РАО ЕЭС» является монополистом по импорту и экспорту электроэнергии в РФ.

Кроме разделения организаций по видам деятельности, существует разделение Единой энергосистемы России на технологические системы действующие по территориальному признаку. Объединенные энергосистемы (ОЭС) не имеют одного собственника, а объединяют энергетические компании отдельно взятого региона и имеют единое диспетчерское управление, которое осуществляется филиалами «СО ЕЭС». На сегодняшний день в России действуют 7 ОЭС:

  • ОЭС Центра (Белгородская, Брянская, Владимирская, Вологодская, Воронежская, Ивановская, Тверская, Калужская, Костромская, Курская, Липецкая, Московская, Орловская, Рязанская, Смоленская, Тамбовская, Тульская, Ярославская энергосистемы);
  • ОЭС Северо-Запада (Архангельская, Карельская, Кольская, Коми, Ленинградская, Новгородская, Псковская и Калининградская энергосистемы);
  • ОЭС Юга (Астраханская, Волгоградская, Дагестанская, Ингушская, Калмыцкая, Карачаево-Черкесская, Кабардино-Балкарская, Кубанская, Ростовская, Северо-Осетинская, Ставропольская, Чеченская энергосистемы);
  • ОЭС Средней Волги (Нижегородская, Марийская, Мордовская, Пензенская, Самарская, Саратовская, Татарская, Ульяновская, Чувашская энергосистемы);
  • ОЭС Урала (Башкирская, Кировская, Курганская, Оренбургская, Пермская, Свердловская, Тюменская, Удмуртская, Челябинская энергосистемы);
  • ОЭС Сибири (Алтайская, Бурятская, Иркутская, Красноярская, Кузбасская, Новосибирская, Омская, Томская, Хакасская, Забайкальская энергосистемы);
  • ОЭС Востока (Амурская, Приморская, Хабаровская и Южно-Якутская энергосистемы).

Основные показатели деятельности

Ключевыми показателями деятельности энергосистемы являются: установленная мощность электростанций, выработка электроэнергии и потребление электроэнергии.

Установленная мощность электростанции – это сумма паспортных мощностей всех генераторов электростанции, которая может меняться в процессе реконструкции действующих генераторов или установки нового оборудования. На начало 2015 года установленная мощность Единой энергосистемы (ЕЭС) России составляла 232.45 тыс. МВт.

На 1 января 2015 года установленная мощность российских электростанций увеличилась на 5 981 МВт по сравнению с 1 января 2014 года. Рост составил 2.6%, а достигнуто это было за счет введения новых мощностей производительностью 7 296 МВт и увеличения мощности действующего оборудования, путем перемаркировки на 411 МВт. При этом были выведены из эксплуатации генераторы мощностью 1 726 МВт. В целом по отрасли по сравнению с 2010 годом рост производственных мощностей составил 8.9%.

Распределение мощностей по объединенным энергосистемам выглядит следующим образом:

  • ОЭС Центра – 52.89 тыс. МВт;
  • ОЭС Северо-Запада – 23.28 тыс. МВт;
  • ОЭС Юга – 20.17 тыс. МВт;
  • ОЭС Средней Волги – 26.94 тыс. МВт;
  • ОЭС Урала – 49.16 тыс. МВт;
  • ОЭС Сибири – 50.95 тыс. МВт;
  • ОЭС Востока – 9.06 тыс. МВт.

Больше всего в 2014 году увеличилась установленная мощность ОЭС Урала – на 2 347 МВт, а также ОЭС Сибири – на 1 547 МВт и ОЭС Центра на 1 465 МВт.

По итогам 2014 года в Российской Федерации было произведено 1 025 млрд. КВтч электроэнергии. По этому показателю Россия занимает 4 место в мире, уступая Китаю в 5 раз, а Соединенным Штатам Америки в 4 раза.

По сравнению с 2013 годом, выработка электроэнергии в Российской Федерации увеличилась на 0.1%. А в отношении к 2009 году рост составил 6.6%, что в количественном выражении составляет 67 млрд. КВтч.

Больше всего электроэнергии в 2014 году в России было произведено тепловыми электростанциями – 677.3 млрд. КВтч, ГЭС произвели – 167.1 млрд. КВтч, а атомные электростанции – 180.6 млрд. КВтч. Производство электроэнергии по объединенным энергосистемам:

  • ОЭС Центра –239.24 млрд. КВтч;
  • ОЭС Северо-Запада –102.47 млрд. КВтч;
  • ОЭС Юга –84.77 млрд. КВтч;
  • ОЭС Средней Волги – 105.04 млрд. КВтч;
  • ОЭС Урала – 259.76 млрд. КВтч;
  • ОЭС Сибири – 198.34 млрд. КВтч;
  • ОЭС Востока – 35.36 млрд. КВтч.

По сравнению с 2013 годом наибольший прирост в выработке электроэнергии был зафиксирован в ОЭС Юга – (+2.3%), а наименьший в ОЭС Средней Волги – (- 7.4%).

Потребление электроэнергии в России в 2014 году составило 1 014 млрд. КВтч. Таким образом, сальдовый остаток составил (+ 11 млрд. КВтч). А наибольшим потребителем электроэнергии по итогам 2014 года в мире является Китай – 4 600 млрд. КВтч, второе место занимают США – 3 820 млрд. КВтч.

По сравнению с 2013 годом потребление электроэнергии в России выросло на 4 млрд. КВтч. Но в целом, динамика потребления за последние 4 года остается примерно на одном и том же уровне. Разница между потреблением электроэнергии за 2010 и 2014 год составляет 2.5%, в пользу последнего.

По итогам 2014 года, потребление электроэнергии по объединенным энергосистемам выглядит следующим образом:

  • ОЭС Центра –232.97 млрд. КВтч;
  • ОЭС Северо-Запада –90.77 млрд. КВтч;
  • ОЭС Юга –86.94 млрд. КВтч;
  • ОЭС Средней Волги – 106.68 млрд. КВтч;
  • ОЭС Урала –260.77 млрд. КВтч;
  • ОЭС Сибири – 204.06 млрд. КВтч;
  • ОЭС Востока – 31.8 млрд. КВтч.

В 2014 году 3 ОЭС имели положительную разницу между произведенной и выработанной электроэнергией. Наилучший показатель у ОЭС Северо-Запада – 11.7 млрд. КВтч, что составляет 11.4% от произведенной электроэнергии, а наихудший у ОЭС Сибири (- 2.9%). Сальдовый остаток электроэнергии по ОЭС РФ выглядит так:

  • ОЭС Центра – 6.27 млрд. КВтч;
  • ОЭС Северо-Запада – 11.7 млрд. КВтч;
  • ОЭС Юга – (- 2.17) млрд. КВтч;
  • ОЭС Средней Волги – (- 1.64) млрд. КВтч;
  • ОЭС Урала – (- 1.01) млрд. КВтч;
  • ОЭС Сибири – (- 5.72) млрд. КВтч;
  • ОЭС Востока – 3.56 млрд. КВтч.

Стоимость 1 КВтч электроэнергии, по итогам 2014 года в России, в 3 раза ниже европейских цен. Среднегодовой европейский показатель составляет 8.4 российских рубля, в то время, как в Российской Федерации средняя стоимость 1 КВтч – 2.7 руб. Лидером по стоимости электроэнергии является Дания – 17.2 рубля за 1 КВтч, второе место занимает Германия – 16.9 рублей. Такие дорогие тарифы связаны в первую очередь с тем, что правительство этих стран отказались от использования атомных электростанций в пользу альтернативных источников энергии.

Если сопоставить стоимость 1 КВтч и среднюю зарплату, то среди европейских стран больше всего в месяц киловатт/час могут купить жители Норвегии – 23 969, второе место занимает Люксембург – 17 945 КВтч, третье Нидерланды – 15 154 КВтч. Среднестатистический россиянин может купить в месяц 9 674 КВтч.

Все российские энергосистемы, а также энергетические системы стран ближнего зарубежья соединены между собой линиями электропередач. Для передачи энергии на дальние расстояния используются высоковольтные линии электропередач мощностью 220 кВ и выше. Они и составляют основу российской энергосистемы и эксплуатируются межсистемными электросетями. Общая протяженность ЛЭП этого класса составляет 153.4 тыс. км., а в целом в Российской Федерации эксплуатируется 2 647.8 тыс. км линий электропередач различной мощности.

Атомная энергетика

Атомная энергетика представляет собой энергетическую отрасль, которая занимается генерацией электроэнергии за счет преобразования ядерной энергии. Атомные электростанции имеют два существенных преимущества перед своими конкурентами – экологичность и экономичность. При соблюдении всех норм эксплуатации АЭС практически не загрязняет окружающую среду, а ядерное топливо сжигается в несоизмеримо меньшем количестве, чем другие виды и топлива и это позволяет экономить на логистике и доставке.

Но, несмотря на эти преимущества, многие страны не хотят развивать атомную энергетику. Связано это в первую очередь с боязнью экологической катастрофы, которая может произойти в результате аварии на АЭС. После аварии на Чернобыльской АЭС в 1986 году к объектам атомной энергетики по всему миру приковано пристальное внимание мировой общественности. Поэтому эксплуатируются АЭС, в основном в развитых в техническом и экономическом отношении государствах.

По данным за 2014 год, атомная энергетика обеспечивает около 3% потребления мировой электроэнергии. На сегодняшний день электростанции с ядерными реакторами функционируют в 31 стране мира. А всего в мире насчитывается 192 атомные электростанции с 438 энергоблоками. Общая мощность всех АЭС мира составляет около 380 тыс. МВт. Наибольшее количество атомных электростанций находится в США – 62, второе место занимает Франция – 19, третье Япония – 17. В Российской Федерации функционирует 10 АЭС и это 5 показатель в мире.

АЭС Соединенных Штатов Америки в общей сложности вырабатывают 798.6 млрд. КВтч, это наилучший показатель в мире, но в структуре вырабатываемой электроэнергии всеми электростанциями США, атомная энергетика составляет около 20%. Наибольшая доля в выработке электроэнергии атомными электростанциями во Франции, АЭС этой страны вырабатывают 77% всей электроэнергии. Выработка французских атомных электростанций составляет 481 млрд. КВтч в год.

По итогам 2014 года, российскими АЭС было сгенерировано 180.26 млрд. КВтч электроэнергии, это на 8.2 млрд. КВтч больше чем в 2013 году, в процентом отношении разница составляет 4.8%. Производство электроэнергии атомными электростанциями России составляет более 17.5% от общего количества всей произведенной в РФ электроэнергии.

Что касается выработки электроэнергии атомными электростанциями по объединенным энергосистемам, то наибольшее количество было сгенерировано АЭС Центра – 94.47 млрд. КВтч – это чуть более половины всей выработки страны. А доля атомной энергетики в этой объединенной энергосистеме самая большая – около 40%.

  • ОЭС Центра – 94. 47 млрд. КВтч (39.8% от всей сгенерированной электроэнергии);
  • ОЭС Северо-Запада –35.73 млрд. КВтч (35% от всей энергии);
  • ОЭС Юга –18.87 млрд. КВтч (22.26% от всей энергии);
  • ОЭС Средней Волги –29.8 млрд. КВтч (28.3% от всей энергии);
  • ОЭС Урала – 4.5 млрд. КВтч (1.7% от всей энергии).

Такое неравномерное распределение выработки связано с месторасположением российских АЭС. Большая часть мощностей атомных электростанций сконцентрирована в европейской части страны, тогда как в Сибири и Дальнем Востоке они отсутствуют вовсе.

Самая крупная АЭС в мире – японская Касивадзаки-Карива, ее мощность составляет 7 965 МВт, а крупнейшая европейская АЭС – Запорожская, мощность которой около 6 000 МВт. Находится она в украинском городе Энергодар. В Российской Федерации самые крупные АЭС имеют мощности по 4 000 МВт, остальные от 48 до 3 000 МВт. Список российских атомных электростанций:

  • Балаковская АЭС – мощность 4 000 МВт. Находится в Саратовской области, неоднократно признавалась лучшей АЭС России. Располагает 4 энергоблоками, была введена в эксплуатацию в 1985 году.
  • Ленинградская АЭС – мощность 4 000 МВт. Крупнейшая АЭС Северо-Западного ОЭС. Располагает 4 энергоблоками, была введена в эксплуатацию в 1973 году.
  • Курская АЭС – мощность 4 000 МВт. Состоит из 4 энергоблоков, начало эксплуатации – 1976 год.
  • Калининская АЭС – мощность 4 000 МВт. Находится на севере Тверской области, располагает 4 энергоблоками. Открыта в 1984 году.
  • Смоленская АЭС – мощность 3 000 МВт. Признавалась лучшей АЭС России в 1991, 1992, 2006 2011 годах. Имеет 3 энергоблока, первый был запущен в эксплуатацию в 1982 году.
  • Ростовская АЭС – мощность 2 000 МВт. Крупнейшая электростанция юга России. На станции введены в эксплуатацию 2 энергоблока, первый в 2001 году, второй в 2010.
  • Нововоронежская АЭС – мощность 1880 МВт. Обеспечивает электроэнергией около 80% потребителей Воронежской области. Первый энергоблок был запущен в сентябре 1964 года. Сейчас действуют 3 энергоблока.
  • Кольская АЭС – мощность 1760 МВт. Первая в России АЭС построенная за полярным кругом, обеспечивает около 60% потребления электричества Мурманской области. Располагает 4 энергоблоками, была открыта в 1973 году.
  • Белоярская АЭС – мощность 600 МВт. Находится в Свердловской области. Была введена в эксплуатацию в апреле 1964 года. Является старейшей из ныне действующих АЭС в России. Сейчас действует только 1 энергоблок из трех предусмотренных проектом.
  • Билибинская АЭС – мощность 48 МВт. Является частью изолированной Чаун-Билибинской энергосистемы вырабатывая около 75% потребляемой ею электроэнергии. Была открыта в 1974 году, состоит из 4 энергоблоков.

Помимо существующих АЭС, в России ведется строительство еще 8 энергоблоков, а также плавучей атомной электростанции малой мощности.

Гидроэнергетика

Гидроэлектростанции обеспечивают довольно невысокую стоимость одного выработанного КВтч энергии. По сравнению с тепловыми электростанциями производство 1 КВтч на ГЭС обходится дешевле в 2 раза. Связано это с довольно простым принципом работы гидроэлектростанций. Строятся специальные гидротехнические сооружения которые обеспечивают необходимый напор воды. Вода, попадая на лопасти турбины, приводит ее в движение, которая в свою очередь приводит в действие генераторы вырабатывающие электроэнергию.

Но повсеместное использование ГЭС невозможно, так как необходимым условием эксплуатации является наличие мощного движущегося водного потока. Поэтому гидроэлектростанции сооружаются на полноводных крупных реках. Еще одним существенным недостатком ГЭС является перекрытие русла рек, что затрудняет нерест рыбы и затапливание больших объемов земельных ресурсов.

Но несмотря на негативные последствия для окружающей среды, гидроэлектростанции продолжают функционировать и строится на крупнейших реках мира. Всего в мире функционируют ГЭС общей мощностью около 780 тыс. МВт. Общее количество ГЭС подсчитать затруднительно, так как в мире действуют множество мелких ГЭС, работающих на нужны отдельного города, предприятия, а то и вовсе частного хозяйства. В среднем гидроэнергетика обеспечивает производство около 20% всей мировой электроэнергии.

Среди всех стран мира более всех от гидроэнергетики зависит Парагвай. В стране 100% электроэнергии вырабатывается на гидроэлектростанциях. Помимо этой страны от гидроэнергетики очень сильно зависят Норвегия, Бразилия, Колумбия.

Наибольшие гидроэлектростанции находятся в Южной Америке и Китае. Самая большая в мире гидроэлектростанция – Санься на реке Янзцы, ее мощность достигает 22 500 МВт, второе место занимает ГЭС на реке Парана – Итайпу, с мощностью 14 000 МВт. Самая крупная ГЭС России – Саяно-Шушенская, ее мощность около 6 400 МВт.

Помимо Саяно-Шушенской ГЭС в России действуют еще 101 гидроэлектростанция с мощностью более 100 МВт. Крупнейшие ГЭС России:

  • Саяно-Шушенская – Мощность - 6 400 МВт, среднегодовое производство электроэнергии – 19.7 млрд. КВтч. Дата ввода в эксплуатацию – 1985 год. ГЭС находится на Енисее.
  • Красноярская – Мощность 6 000 МВт, среднегодовое производство электроэнергии – около 20 млрд. КВтч, запущена в эксплуатацию в 1972 году, также расположена на Енисее.
  • Братская – Мощность 4 500 МВт, расположена на Ангаре. В год в среднем вырабатывает около 22.6 млрд. КВтч. Введена в эксплуатацию в 1961 году.
  • Усть-Илимская – Мощность 3 840 МВт, расположена на Ангаре. Среднегодовая производительность 21.7 млрд. КВтч. Была построена в 1985 году.
  • Богучанская ГЭС – Мощность около 3 000 МВт, была построена на Ангаре в 2012 году. Производит около 17.6 млрд. КВтч в год.
  • Волжская ГЭС – Мощность 2 640 МВт. Построена в 1961 году в Волгоградской области, среднегодовая производительность 10.43 КВтч.
  • Жигулевскя ГЭС – Мощность около 2 400 МВт. Была построена в 1955 году на реке Волга в Самарской области. В год производит около 11.7 КВтч электроэнергии.

Что касается объединенных энергетических систем, то наибольшую долю в выработке электроэнергии с помощью ГЭС имеют ОЭС Сибири и Востока. В этих ОЭС на долю гидроэлектростанций приходится 47.5 и 35.3% всей выработанной электроэнергии, соответственно. Это объясняется наличием в этих регионах крупных полноводных рек бассейна Енисея и Амура.

По итогам 2014 года ГЭС России было произведено более 167 млрд. КВтч электроэнергии. По сравнению с 2013 годом этот показатель уменьшился на 4.4%. Наибольший вклад в генерацию электроэнергии с помощью ГЭС внесла ОЭС Сибири – около 57% от общероссийского.

Теплоэнергетика

Теплоэнергетика является основой энергетического комплекса подавляющего большинства стран мира. Несмотря на то, что у тепловых электростанций масса недостатков, связанных с загрязнением окружающей среды и высокой себестоимостью электроэнергии, они используются повсеместно. Причина такой популярности – универсальность ТЭС. Тепловые электростанции могут работать на различных видах топлива и при проектировании обязательно учитывается какие энергоресурсы являются оптимальными для данного региона.

С помощью тепловых электростанций производится около 90% всей мировой электроэнергии. При этом на долю ТЭС использующих в качестве топлива нефтепродукты приходится производство 39% всей мировой энергии, ТЭС работающих на угле – 27%, а на долю газовых тепловых электростанций – 24% сгенерированного электричества. В некоторых странах существует сильная зависимость ТЭС от одного вида топлива. Например, подавляющее большинство польских ТЭС работают на угле, такая же ситуация и в ЮАР. А вот большинство тепловых электростанций в Нидерландах используют в качестве топлива природный газ.

В Российской Федерации основными видами топлива для ТЭС являются природный и попутный нефтяной газ и уголь. Причем на газу работает большинство ТЭС европейской части России, а угольные ТЭС преобладают в южной Сибири и Дальнем Востоке. Доля электростанций использующих в качестве основного топлива мазут незначительна. Кроме этого многие тепловые электростанции в России используют несколько видов топлива. Например, Новочеркасская ГРЭС в Ростовской области использует все три основных вида топлива. Доля мазута составляет 17%, газа – 9%, а угля – 74%.

По количеству произведенной электроэнергии в РФ в 2014 году тепловые электростанции прочно удерживают лидирующие позиции. Всего за прошедший год, ТЭС произвели 621.1 млрд. КВтч, это на 0.2% меньше чем в 2013 году. А в целом выработка электроэнергии тепловыми электростанциями РФ, снизилась до уровня 2010 года.

Если рассматривать выработку электроэнергии в разрезе ОЭС, то в каждой энергосистеме на долю ТЭС приходится наибольшее производство электричества. Больше всего доля ТЭС в ОЭС Урала – 86.8%, а наименьшая в ОЭС Северо-Запада – 45.4%. Что касается количественного производства электроэнергии, то в разрезе ОЭС это выглядит следующим образом:

  • ОЭС Урала – 225.35 млрд. КВтч;
  • ОЭС Центра – 131.13 млрд. КВтч;
  • ОЭС Сибири – 94.79 млрд. КВтч;
  • ОЭС Средней Волги – 51.39 млрд. КВтч;
  • ОЭС Юга – 49.04 млрд. КВтч;
  • ОЭС Северо-Запада – 46.55 млрд. КВтч;
  • ОЭС Дальнего Востока – 22.87 млрд. КВтч.

Тепловые электростанции в России разделяются на два вида ТЭЦ и ГРЭС. Теплоэлектроцентраль (ТЭЦ) представляет собой электростанцию с возможностью отбора тепловой энергии . Таким образом, ТЭЦ производит не только электроэнергию, но и тепловую энергию, использующуюся для горячего водоснабжения и отопления помещений. ГРЭС – тепловая электростанция производящая только электроэнергию. Аббревиатура ГРЭС осталась с советских времен и означала государственная районная электростанция.

На сегодняшний день в Российской Федерации функционирует около 370 тепловых электростанций. Из них 7 имеют мощность свыше 2 500 МВт:

  • Сургутская ГРЭС – 2 – мощность 5 600 МВт, виды топлива – природный и попутный нефтяной газ – 100%.
  • Рефтинская ГРЭС – мощность 3 800 МВт, виды топлива – уголь – 100%.
  • Костромская ГРЭС – мощность 3 600 МВт, виды топлива – природный газ -87%, уголь – 13%.
  • Сургутская ГРЭС – 1 – мощность 3 270 МВт, виды топлива – природный и попутный нефтяной газ – 100%.
  • Рязанская ГРЭС – мощность 3070 МВт, виды топлива – мазут – 4%, газ – 62%, уголь – 34%.
  • Киришская ГРЭС – мощность 2 600 МВт, виды топлива – мазут – 100%.
  • Конаковская ГРЭС – мощность 2 520 МВт, виды топлива – мазут – 19%, газ – 81%.

Перспективы развития отрасли

Последние несколько лет в российском энергетическом комплексе сохраняется положительный баланс между выработанной и потребленной электроэнергией. Как правило, общее количество потребленной энергии составляет 98-99% от выработанной. Таким образом можно сказать, что существующие производственные мощности полностью перекрывают потребности страны в электроэнергии.

Основные направления деятельности российских энергетиков направлены на повышение электрификации удаленных районов страны, а также на обновление и реконструкцию уже существующих мощностей.

Необходимо отметить, что стоимость электроэнергии в России существенно ниже, чем в странах Европы и Азиатско - Тихоокеанского региона, поэтому разработке и внедрению новых альтернативных источников получения энергии, не уделяется должного внимания. Доля в общем производстве электроэнергии ветроэнергетики, геотермальной энергетики и солнечной энергетики в России не превышает 0.15% от общего количества. Но если геотермальная энергетика очень сильно ограничена территориально, а солнечная энергетика в России не развивается в промышленных масштабах, то пренебрежение ветроэнергетикой является недопустимым.

На сегодняшний день в мире, мощность ветряных генераторов составляет 369 тыс. МВт, что всего на 11 тыс. МВт меньше, чем мощность энергоблоков всех АЭС мира. Экономический потенциал российской ветроэнергетики составляет около 250 млрд. КВтч в год, что равняется примерно четверти всей потребляемой электроэнергии в стране. На сегодняшний день производство электроэнергии с помощью ветрогенераторов не превышает 50 млн. КВтч в год.

Необходимо также отметить повсеместное внедрение энергосберегающих технологий, во все виды хозяйственной деятельности, которое наблюдается в последние годы. На производствах и в домашних хозяйствах используются различные приборы позволяющие сократить расход электроэнергии, а в современном строительстве активно используют теплоизоляционные материалы. Но, к сожалению, несмотря даже на принятый в 2009 году Федеральный Закон «Об энергосбережении и повышении энергетической эффективности в Российской Федерации», по уровню экономии электроэнергии и энергосбережения, РФ очень сильно отстает от стран Европы и США.

Будьте в курсе всех важных событий United Traders - подписывайтесь на наш

Электроэнергетика - базовая отрасль, развитие которой является непременным условием развития экономики и других сфер жизни общества. В мире производится около 13000 млрд. кВт/ч, из которых только на США приходится до 25%. Свыше 60% электроэнергии в мире производится на тепловых электростанциях (в США, России и Китае - 70-80%), примерно 20% - на ГЭС, 17% - на атомных станциях (во Франции и Бельгии - 60%, Швеции и Швейцарии - 40-45%).

Наиболее обеспеченными электроэнергией в расчете на душу населения являются Норвегия (28 тыс. кВт/ч в год), Канада (19 тыс.), Швеция (17 тыс.).

Электроэнергетика вместе с топливными отраслями, включающими разведку, добычу, переработку и транспортировку источников энергии, а также и самой электрической энергии, образует важнейший для экономики любой страны топливно-энергетический комплекс (ТЭК). Около 40% всех первичных энергоресурсов мира расходуется на выработку электроэнергии. В ряде стран основная часть топливно-энергетического комплекса принадлежит государству (Франция, Италия и др.), но во многих странах основную роль в ТЭК играет смешанный капитал.

Электроэнергетика занимается производством электроэнергии, ее транспортировкой и распределением. Особенность электроэнергетики состоит в том, что ее продукция не может накапливаться для последующего использования: производство электроэнергии в каждый момент времени должно соответствовать размерам потребления с учетом нужд самих электростанций и потерь в сетях. Поэтому связи в электроэнергетике обладают постоянством, непрерывностью и осуществляются мгновенно.

Электроэнергетика оказывает большое воздействие на территориальную организацию хозяйства: позволяет осваивать ТЭР удаленных восточных и северных районов; развитие магистральных высоковольтных линий способствует более свободному размещению промышленных предприятий; крупные ГЭС притягивают к себе энергоемкие производства; в восточных районах электроэнергетика является отраслью специализации и служит основой формирования территориально-производственных комплексов.

Считается, что для нормального развития экономики рост производства электроэнергии должен обгонять рост производства во всех других отраслях. Большую часть выработанной электроэнергии потребляет промышленность. По производству электроэнергии (1015,3 млрд. кВт.-ч в 2007 г.) Россия занимает четвертое место после США, Японии и Китая.

По масштабам производства электроэнергии выделяются Центральный экономический район (17,8% общероссийского производства), Восточная Сибирь (14,7%), Урал (15,3%) и Западная Сибирь (14,3%). Среди субъектов РФ по выработке электроэнергии лидируют Москва и Московская область, Ханты-Мансийский автономный округ, Иркутская область, Красноярский край, Свердловская область. Причем электроэнергетика Центра и Урала базируется на привозном топливе, а сибирские регионы работают на местных энергоресурсах и передают электроэнергию в другие районы.

Электроэнергетика современной России главным образом представлена тепловыми электростанциями (рис. 2), работающими на природном газе, угле и мазуте, в последние годы в топливном балансе электростанций возрастает доля природного газа. Около 1/5 отечественной электроэнергии вырабатывают гидроэлектростанции и 15% - АЭС.

Тепловые электростанции, работающие на низкокачественном угле, как правило, тяготеют к местам его добычи. Для электростанций на мазуте оптимально их размещение рядом с нефтеперерабатывающими заводами. Электростанции на газе ввиду сравнительно низкой величины затрат на его транспортировку преимущественно тяготеют к потребителю. Причем в первую очередь переводят на газ электростанции крупных и крупнейших городов, так как он является более чистым в экологическом отношении топливом, чем уголь и мазут. ТЭЦ (производящие и тепло, и электроэнергию) тяготеют к потребителю независимо от топлива, на котором они работают (теплоноситель при передаче на расстояние быстро остывает).

Самыми крупными тепловыми электростанциями мощностью более 3,5 млн. кВт каждая являются Сургутская (в Ханты-Мансийском автономном округе), Рефтинская (в Свердловской области) и Костромская ГРЭС. Мощность более 2 млн. кВт имеют Киришская (около Санкт-Петербурга), Рязанская (Центральный район), Новочеркасская и Ставропольская (Северный Кавказ), Заинская (Поволжье), Рефтинская и Троицкая (Урал), Нижневартовская и Березовская в Сибири.

Геотермические электростанции, использующие глубинное тепло Земли, привязаны к источнику энергии. В России на Камчатке действуют Паужетская и Мутновская ГТЭС.

Гидроэлектростанции - весьма эффективные источники электроэнергии. Они используют возобновимые ресурсы, обладают простотой управления и очень высоким коэффициентом полезного действия (более 80%). Поэтому стоимость производимой ими электроэнергии в 5-6 раз ниже, чем на ТЭС.

Гидроэлектростанции (ГЭС) экономичнее всего строить на горных реках с большим перепадом высот, тогда как на равнинных реках для поддержания постоянного напора воды и снижения зависимости от сезонных колебаний объемов воды требуется создание больших водохранилищ. Для более полного использования гидроэнергетического потенциала сооружаются каскады ГЭС. В России созданы гидроэнергетические каскады на Волге и Каме, Ангаре и Енисее. Общая мощность Волжско-Камского каскада - 11,5 млн. кВт. И он включает 11 электростанций. Самыми мощными являются Волжская (2,5 млн. кВт) и Волгоградская (2,3 млн. кВт). Действуют также Саратовская, Чебоксарская, Воткинская, Иваньковская, Угличская и др.

Еще более мощный (22 млн. кВт) - Ангаро-Енисейский каскад, включающий самые крупные в стране ГЭС: Саянскую (6,4 млн. кВт), Красноярскую (6 млн. кВт), Братскую (4,6 млн. кВт), Усть-Илимскую (4,3 млн. кВт).

Будущее за использованием нетрадиционных источников энергии - ветровой, энергии приливов, Солнца и внутренней энергии Земли. В нашей стране действует всего две приливные станции (в Охотском море и на Кольском полуострове) и одна геотермальная на Камчатке.

Атомные электростанции (АЭС) используют высокотранспортабельное топливо. Учитывая, что 1 кг урана заменяет 2,5 тыс. т угля, АЭС целесообразнее размещать вблизи потребителя, в первую очередь в районах, лишенных других видов топлива. Первая в мире АЭС была построена в 1954 г. в г. Обнинске (Калужская обл.). Сейчас в России действует 8 атомных электростанций, из которых самыми мощными являются Курская и Балаковская (Саратовская обл.) по 4 млн. кВт каждая. В западных районах страны действуют также Кольская, Ленинградская, Смоленская, Тверская, Нововоронежская, Ростовская, Белоярская. На Чукотке - Билибинская АТЭЦ.

Важнейшая тенденция развития электроэнергетики - объединение электростанций в энергосистемах, которые осуществляют производство, передачу и распределение электроэнергии между потребителями. Они представляют собой территориальное сочетание электростанций разных типов, работающих на общую нагрузку. Объединение электростанций в энергосистемы способствует возможности выбирать наиболее экономичный режим нагрузки для разных типов электростанций; в условиях большой протяженности государства, существования поясного времени и несовпадения пиковых нагрузок в отдельных частях таких энергосистем можно маневрировать производством электроэнергии во времени и пространстве и перебрасывать ее по мере надобности во встречных направлениях.

В настоящее время функционирует Единая энергетическая система (ЕЭС) России. В ее состав входят многочисленные электростанции европейской части и Сибири, которые работают параллельно, в едином режиме, сосредоточивая более 4/5 суммарной мощности электростанций страны. В регионах России восточнее Байкала действуют небольшие изолированные энергосистемы.

Энергетической стратегией России на ближайшее десятилетие предусмотрено дальнейшее развитие электрификации за счет экономически и экологически обоснованного использования ТЭС, АЭС, ГЭС и нетрадиционных возобновляемых видов энергии, повышение безопасности и надежности действующих энергоблоков АЭС.

13 .Легкая промышленность

Лёгкая промышленность - совокупность специализированных отраслей промышленности, производящих главным образом предметы массового потребления из различных видов сырья. Лёгкая промышленность занимает одно из важных мест в производстве валового национального продукта и играет значительную роль в экономике страны.

Лёгкая промышленность осуществляет как первичную обработку сырья, так и выпуск готовой продукции. Предприятия лёгкой промышленности производят также продукцию производственно-технического и специального назначения, которая используется в мебельной, авиационной, автомобильной, химической, электротехнической, пищевой и других отраслях промышленности, в сельском хозяйстве, в силовых ведомствах, на транспорте и в здравоохранении. Одной из особенностей легкой промышленности является быстрая отдача вложенных средств. Технологические особенности отрасли позволяют осуществлять быструю смену ассортимента выпускаемой продукции при минимуме затрат, что обеспечивает высокую мобильность производства.

Лёгкая промышленность объединяет несколько подотраслей:

1.Текстильная.

1.Хлопчатобумажная.

2.Шерстяная.

3.Шёлковая.

4.Льняная.

5.Пенько-джутовая.

6.Трикотажная.

7.Валяльно-войлочная.

8.Сетевязальная.

2.Швейная.

3.Кожевенная.

4.Меховая.

5.Обувная.

Легкая промышленность объединяет группу отраслей, обеспечивающих население предметами потребления (ткани, обувь, одежда), а также выпускающих продукцию промышленного назначения и культурно-бытовые товары (телевизоры, холодильники и др.). Легкая промышленность имеет тесные связи с сельским хозяйством, химической промышленностью и машиностроением. Они снабжают ее сырьем – хлопком, натуральной и искусственной кожей, красителями, а также машинами и оборудованием.

Ведущая отрасль легкой промышленности – текстильная. Она является крупнейшей и по объему производства, и по количеству занятых в ней работников. В ее состав входят производства всех видов тканей, трикотажа, ковров и т. д.

Больше всего производят тканей из химических волокон. Крупнейшим их производителем являются США, опережая ближайших конкурентов – Индию и Японию – почти в три раза. За ними идут «азиатские тигры» – Республика Корея и Тайвань. Больше всего хлопчатобумажных тканей производят развивающиеся страны. Безусловным лидером здесь является Индия, за которой следуют США и Китай. Производство шелковых тканей традиционно для стран Азии, шерстяных – для таких развитых стран, как Великобритания, США, Италия. Они же – главные экспортеры этих тканей. Меньше всего в мире производится льняных тканей. Лидерами в этой отрасли являются Россия, Польша, Беларусь и Франция.

Популярны в быту различные ковры, массовое производство которых развито в США и Индии. Но наиболее ценные ковры ручной работы. Их поставляют на мировой рынок Иран, Афганистан, Турция.

По сравнению с другими отраслями легкой промышленности география текстильной претерпела наибольшие изменения. За последние десятилетия доля развитых стран в мировом текстильном производстве заметно уменьшилась. В развивающихся странах, наоборот, наращиваются темпы развития отрасли. Наряду с давними лидерами – Индией и Египтом – текстильное производство быстро развивается в странах Юго-Восточной Азии, располагающих дешевой рабочей силой.

С текстильной тесно связана швейная и галантерейная промышленность. Пошив готовой одежды уверенно перемещается на восток: Индия и Китай соревнуются на равных с европейскими странами по пошиву одежды массового спроса. Однако и сегодня Рим является центром массовой, а Париж – «высокой» моды.

Кожевенно-обувная промышленность сосредоточена главным образом в развитых странах. Впереди находятся США и Италия. Каждая из этих стран выпускает ежегодно почти 600 млн пар обуви. На первое место по экспорту обуви вышли Китай и Тайвань, производящие дешевую и относительно качественную обувь, в том числе много спортивной.

Предприятия меховой промышленности производят очень дорогую продукцию из природного сырья. В свое время в Канаде вместо денег в обороте были шкуры бобров, а в Сибири – соболиный мех. Четыре страны – Россия, США, Германия и Китай – захватили почти весь мировой меховой рынок. Особую роль играет Греция, где перерабатываются меховые обрезки со всего мира. Во многих странах изготавливают дешевую одежду из искусственного меха.

Важной отраслью легкой промышленности является ювелирное производство, включающее переработку драгоценных металлов и камней. Эта отрасль развита в США, Индии, Израиле, западноевропейских странах. Нидерланды называют «бриллиантовым центром» мира – здесь производится огранка большинства алмазов, добываемых на Земле.

Очень распространено в мире производство игрушек. Оно развито практически в каждой стране, однако выделяются три лидера – США, Китай (Гонконг) и Япония.

По особенностям размещения предприятия легкой промышленности делятся на группы. К первой группе относятся те из них, которые занимаются первичной обработкой сырья и ориентируются на источники сырья. Ко второй – те, которые вырабатывают готовую продукцию. Они размещаются возле потребителя. Третья группа – это предприятия, в размещении которых учитывается как сырьевая база, так и потребитель.

Для легкой промышленности характерна менее выраженная по сравнению с другими отраслями территориальная специализация, так как практически в каждом регионе имеются те или иные ее предприятия. Однако в России можно выделить специализированные узлы и районы, особенно в текстильной промышленности, дающие определенный ассортимент продукции. Например, Ивановская и Тверская области специализируются на выпуске хлопчатобумажных изделий. Центральный экономический район специализируется на производстве продукции всех отраслей текстильной промышленности. Но чаще всего подотрасли легкой промышленности являются дополняющими хозяйственный комплекс регионов, обеспечивающими только внутренние потребности регионов.

Факторы размещения предприятий легкой промышленности разнообразны, однако можно выделить основные.

1. Сырьевой фактор, влияющий преимущественно на размещение предприятий по первичной обработке сырья (например, льнообрабатывающие фабрики расположены в районах производства льна, шерстомоечные предприятия - в районах овцеводства, предприятия по первичной обработке кож - вблизи крупных мясокомбинатов).

2. Населенческий, т. е. потребительский фактор. Готовая продукция легкой промышленности менее транспортабельна по сравнению с полуфабрикатами. Например, дешевле поставлять прессованный хлопок-сырец, чем хлопчатобумажные ткани.

3. Фактор трудовых ресурсов, предусматривающий их значительные размеры и квалификацию, так как все отрасли легкой промышленности трудоемкие. Исторически сложилось так, что в отраслях легкой промышленности используется преимущественно женский труд, поэтому необходимо учитывать возможности использования в регионах и женского, и мужского труда (т. е. развивать легкую промышленность в районах сосредоточения тяжелой индустрии, создавать соответствующие производства в регионах концентрации легкой промышленности).

В прошлом существенную роль в размещении играла обеспеченность топливно-энергетическими ресурсами, так как текстильное и обувное производства являются топливоемкими. В настоящее время этот фактор считается второстепенным в связи с развитием сети ЛЭП, нефте- и газопроводов.

Сырьевая база легкой промышленности России достаточно развита, она обеспечивает значительную часть потребностей предприятий в льноволокне, шерсти, химическом волокне и нитях, пушно-меховом и кожевенном сырье.

Основной поставщик натурального сырья для легкой промышленности - сельское хозяйство.

1.1. Значение, особенности, технологическая структура и топливная база электроэнергетики

Значение электроэнергии для жизнедеятельности населения и функционирования экономики таково, что в современном мире обойтись без нее практически невозможно. Электроэнергия - товар, представляющий собой одну из самых значительных ценностей среди существующих товаров и услуг. Еще в ХХ в. электроэнергетика стала ключевой отраслью экономики в подавляющем большинстве стран. Электроэнергия - важный фактор основных социально-экономических процессов в современном мире: жизнеобеспечения населения и потребления домохозяйств; производства товаров и услуг; национальной безопасности; охраны окружающей среды .

Электроэнергию можно уподобить воздуху, который редко замечают, но без которого невозможна жизнь. Если прекращается подача электроэнергии, вы обнаруживаете, что самые простые, каждодневно испытываемые удобства вдруг становятся недоступными, а средства, заменявшие их еще 100 лет назад, уже давно вышли из употребления. Отрасли экономики, не использующие стационарных источников электроэнергии и не работающие в единой энергосистеме, в современной экономике скорее исключение - например, автомобильный, водный и авиационный транспорт, растениеводство в сельском хозяйстве или геологоразведка. Но и в этих отраслях используются технологические процессы, требующие источников электроэнергии. Без электроэнергии производство большинства продуктов было бы невозможно или обходилось бы в десятки раз дороже.

В каком-то смысле электроэнергия - стержень современной технико-экономической цивилизации. Еще сравнительно недавно, лет 150 назад, электроэнергия отсутствовала в экономической жизни. Ведущим источником энергии выступала живая сила человека и животных. Только в XVI веке началось использование энергии движения воды в промышленных целях (т. н. «вододействующие заводы»), а в XVIII в. появилась паровая машина, в середине XIX в. - двигатель внутреннего сгорания. Изобретение в XIX в. технологий генерации электрической энергии создало возможность для широкого распространения электромеханизмов, резко повысило производительность труда на многих производственных операциях. Однако оборудование по генерации энергии приходилось размещать рядом с устройствами, ее потребляющими, поскольку удобных и экономичных технологий для передачи энергии не было.

Технической революцией, изменившей лицо экономики всех стран, стало изобретение технологии трансформации электроэнергии по напряжению и силе тока, передачи ее на большие расстояния. Это сделало размещение производства энергии, других товаров и услуг в значительной степени независимым друг от друга и обеспечило рост эффективности экономики.

Создание в ХХ в. национальных и региональных электроэнергетических систем закрепило переход к индустриальной стадии развития мировой экономики. Экономический рост в основном базировался на экстенсивных факторах: расширении ресурсной базы и увеличении занятости. Почти до последней трети XX в. технический прогресс и рост производства сопровождались увеличением потребления энергии, ростом энерговооруженности труда.

Электроэнергетика - базовая инфраструктурная отрасль, в которой реализуются процессы производства, передачи, распределения электроэнергии. Она имеет связи со всеми секторами экономики, снабжая их произведенными электричеством и теплом и получая от некоторых из них ресурсы для своего функционирования (рис. 1.1.1).

Машины и оборудование


Рис. 1.1.1. Электроэнергетика в современной экономике

Роль электроэнергетики в ХХI в. остается исключительно важной для социально-экономического развития любой страны и мирового сообщества в целом. Энергопотребление тесно корреспондирует с уровнем деловой активности и с уровнем жизни населения. Научно-технический прогресс и развитие новых секторов и отраслей экономики, совершенствование технологий, повышение качества и улучшение условий жизни населения предопределяют расширение сфер использования электроэнергии и усиление требований к надежному и бесперебойному энергоснабжению .

Особенности электроэнергетики как отрасли обуславливаются спецификой ее основного продукта – электроэнергии, а также характером процессов ее производства и потребления.

Электроэнергия по своим свойствам подобна услуге: время производства совпадает со временем потребления. Однако это подобие не является неотъемлемым физическим свойством электроэнергии - ситуация изменится, если появятся эффективные технологии хранения электроэнергии в значительных масштабах. Пока это в основном аккумуляторы разных типов, а также гидроаккумулирующие станции.

Электроэнергетика должна быть готова к выработке, передаче и поставке электроэнергии в момент появления спроса, в том числе в пиковом объеме, располагая для этого необходимыми резервными мощностями и запасом топлива. Чем больше максимальное (хотя и кратковременное) значение спроса, тем больше должны быть мощности, чтобы обеспечить готовность к оказанию услуги.

Невозможность хранения электроэнергии в промышленных масштабах предопределяет технологическое единство всего процесса производства, передачи и потребления электроэнергии. Вероятно, это единственная отрасль в современной экономике, где непрерывность производства продукции должна сопровождаться таким же непрерывным ее потреблением. В силу этой особенности в электроэнергетике существуют жесткие технические требования к каждому этапу технологического цикла производства, передачи и потребления продукта, в том числе по частоте электрического тока и напряжению.

Принципиальной особенностью электрической энергии как продукта, отличающей ее от всех других видов товаров и услуг, является то, что ее потребитель может повлиять на устойчивость работы производителя. Последнее обстоятельство, по понятным причинам, может иметь большое число совершенно неожиданных следствий.

Очевидно, потребности экономики и общества в электрической энергии существенно зависят от погодных факторов, от времени суток, от технологических режимов различных производственных процессов в отраслях-потребителях, от особенностей домашних хозяйств и даже от программы телепередач. Различия между максимальным и минимальным уровнями потребления определяет потребность в так называемых резервных мощностях, которые включаются только тогда, когда уровень потребления достигает определенного значения.

Экономические характеристики производства электроэнергии зависят от типа электростанции и вида технологического топлива, от степени ее загрузки и режима работы. При прочих равных условиях в наибольшей степени востребуется электроэнергия тех станций, которые генерируют ее в нужное время и в нужном объеме с наименьшими издержками.

С учетом всех этих особенностей в электроэнергетике необходимо и целесообразно объединение устройств, производящих энергию – генераторов, в единую энергетическую систему , что обеспечивает сокращение суммарных издержек производства и уменьшает потребность в резервировании производственных мощностей. Эти же свойства обуславливают наличие в отрасли системного оператора, который выполняет координирующие функции. Он регулирует график и объем как производства, так и потребления электроэнергии. Решения системного оператора принимаются на основании рыночных сигналов от производителей о возможностях и стоимости производства электроэнергии, от потребителей – о спросе на нее в определенные временные интервалы. В конечном счете системный оператор должен обеспечить надежную и безопасную работу энергосистемы, эффективное удовлетворение спроса на электроэнергию. Его деятельность отражается на производственных и финансовых результатах всех участников рынка электроэнергии, а также на их инвестиционных решениях.

Большая часть производства электроэнергии в мире осуществляется на электрических станциях трех типов :

· на тепловых электростанциях (ТЭС), где тепловая энергия , образующаяся при сжигании органического топлива (уголь, газ, мазут, торф, сланцы и т. д.), используется для вращения турбин, приводящих в движение электрогенератор, преобразуясь, таким образом, в электроэнергию. Опыт продемонстрировал эффективность одновременного производства тепла и электроэнергии на ТЭЦ, что привело к распространению в ряде стран централизованного теплоснабжения ;

· на гидроэлектростанциях (ГЭС), где в электроэнергию преобразуется механическая энергия потока воды с помощью гидравлических турбин, вращающих электрогенераторы;

В последние десятилетия резко возросло внимание к возобновляемым источникам энергии . В частности, активно разрабатываются технологии использования энергии солнца и ветра. Потенциал данных источников энергии огромен. Однако, на сегодняшний день производство электроэнергии в промышленных масштабах из солнечной энергии в большинстве случаев оказывается менее эффективным, чем ее производство из традиционных видов ресурсов. Что касается энергии ветра, то здесь ситуация несколько иная. В развитых странах, особенно под влиянием экологических движений, преобразование энергии ветра в электрическую выросло весьма значительно. Нельзя не упомянуть также геотермальную энергию, которая может иметь серьезное значение для некоторых государств или отдельных регионов: Исландия, Новая Зеландия, Россия (Камчатка, Ставропольский край , Краснодарский край , Калининградская область). Однако пока еще все эти виды электрогенерации успешно развиваются в тех странах, где производство и (или) потребление электроэнергии на основе возобновляемых ресурсов дотируется государством.

В конце XX – начале XXI резко возрос интерес к биоэнергетическим ресурсам. В отдельных странах (например, в Бразилии) производство электроэнергии на биотопливе заняло заметное место в энергетическом балансе. В США бала принята специальная программа субсидирования биотоплива. Однако, в настоящее время резко возросли сомнения в перспективах развития данного направления в электроэнергетике. С одной стороны, оказалось, что при производстве биотоплива очень неэффективно используются такие природные ресурсы, как земля и вода; с другой – отвод обширных площадей пахотной земли под производство биотоплива внес свой вклад в удвоение цен на продовольственное зерно. Все это в обозримой перспективе делает весьма проблематичным широкое использование биотоплива в электроэнергетике.

1.2. Российская электроэнергетика и ее место в мире

Россия обладает значительными запасами природных энергоресурсов, что создает возможность для долгосрочного роста производства электроэнергии в соответствии с предъявляемым экономикой растущим спросом. В российской экономике представлены все основные виды энергоресурсов (см. рис. 1.2.1).

В период с 1970 по 1990 г. производство первичных энергоресурсов в СССР выросло с 801 млн до 1857 млн. т. у.т., а в их структуре произошли крупные изменения. Значительно увеличилась доля газа, сократился удельный вес угля и нефти. Это было обусловлено быстрым развитием газодобычи в СССР в эти годы.

После 1991 г. российская экономика переживала трансформационный спад, что привело к сокращению добычи и потребления энергоресурсов. С началом экономического подъема в 2000-х гг. картина изменилась, и к середине текущего десятилетия Россия приблизилась к уровню производства и потребления энергоресурсов 1990 года. В настоящее время Россия входит в число крупнейших нефте - и газодобывающих стран мира и не только обеспечивает внутренний спрос на эти виды топлива, но и осуществляет значительные поставки на экспорт (табл. 1.2.2, 1.2.3).

Рис. 1.2.1. Структура производства первичных энергоресурсов в российской экономике (расчет Института энергетических исследований РАН по данным Росстата)

Анализ баланса энергоресурсов в российской экономике за 2006 год показывает, что в общем объеме этих ресурсов (1635,1 млн. т. у.т.) электроэнергия занимает всего 20,1 %, но в общем объеме их конечного потребления (981,5 млн. т. у.т.) - уже 34,4 %, то есть находится на первом месте, опережая по доле другие энергоресурсы.

В России существенное место в топливных ресурсах, используемых для преобразования в другие виды энергии, занимает газ. Это объясняется наличием на территории страны богатейших месторождений и относительным занижением внутренних цен на газ. Поэтому имеет место существенное отклонение структуры потребления энергоресурсов от общемировой тенденции (табл. 1.2.1). Ожидается, что в ближайшее десятилетие в структуре топливного баланса в нашей стране будут происходить изменения. В период до 2020 года доля газа останется самой крупной, но будет постепенно сокращаться, а доля угля - расти. Данные изменения приведут к повышению эффективности использования энергоресурсов в российской экономике.

Таблица 1.2.1

Структура потребления топливных ресурсов для преобразования в другие виды энергии в российской экономике (% к суммарному потреблению)

Уголь

Мазут

Прочие

Таблицу переделать: данные дать только за 1991 и 2006 годы, в каждой колонке (по газу, углю и т. д.) дать цифры по России и миру. Указать источник.

Бóльшая часть электроэнергии в России в настоящее время производится и потребляется внутри страны (см. табл. 1.2.2, 1.2.3). Более половины спроса приходится на долю промышленного сектора экономики, хотя по сравнению с 1991 г. она несколько сократилась. Доли потребления сельского хозяйства и транспорта также снизились за последнее пятнадцатилетие, а соответствующий показатель других отраслей вырос. Это объясняется структурными изменениями в российской экономике, которые сопровождались перераспределением материальных, трудовых и финансовых ресурсов между ее секторами. За последние годы значительно увеличилось электропотребление населением, поскольку быстрыми темпами растет оснащенность домохозяйств бытовыми электроприборами. Растущий потребительский спрос на электроэнергию обусловлен также интенсивным строительством качественного нового современного жилья. Заметное влияние на изменение в структуре электропотребления оказал быстро развивающийся сектор рыночных услуг.

Таблица 1.2.2

Электробаланс Российской Федерации, млрд. кВт ч

Производство всего

Потреблено

Промышлен-ностью

Сельским хозяйством

Транспортом

Другими отраслями

Домохозяй-ствами

*) Добыча полезных ископаемых, обрабатывающие производства, производство и распределение электроэнергии, газа и воды.

**) Транспорт и связь.

Таблица 1.2.3

Электробаланс Российской Федерации, %

Производ-ство, всего

Получено из-за пределов Российской Федерации

Потребленовсего

в т. ч. потреблено

Отпущено за пределы Российской Федерации

промышленностью

сельским хозяйством

транспортом

другими отраслями

населением

Примечание. Источник - Росстат

С учетом динамики спроса и развития топливной базы в Российской Федерации в гг. наблюдался значительный спад, а в гг. устойчивый рост производства электроэнергии (табл. 1.2.4).

Таблица 1.2.4

Производство электроэнергии в России по типам

электростанций, млрд. кВт. ч, по годам

Тип электростанций

Все электростанции

В том числе:

Примечание. Источник - Росстат

В этот период произошли определенные сдвиги в структуре генерации: от 73 до 66,6 % сократилась доля производства электроэнергии на ТЭС, доля ГЭС в итоге достигла доперестроечного уровня 15,7 %, а доля АЭС выросла от 11,2 до 17,7 %.

Сегодняшняя структура производства и потребления электроэнергии в российской экономике сложилась в ходе ее рыночных преобразований, начавшихся в 1992 году. Трансформационный спад гг. повлек за собой сокращение производства и потребления электроэнергии. Однако падение выработки в электроэнергетике было меньшим, чем в целом по экономике, так как спад производства в электроемких отраслях (металлургии, нефтепереработке и др.) был меньшим, чем в отраслях с относительно низкой электроемкостью (машиностроение, легкая промышленность и др.). При этом после либерализации ценообразования тарифы на электроэнергию росли намного медленнее, чем цены на другие товары (см. рис. 1.2.2).

Рисунок 1.2.2

Охарактеризованные выше сдвиги в структуре производства и соотношениях цен в гг. привели к существенному росту электроемкости ВВП.

После финансового кризиса 1998 г. в российской экономике возобновился экономический рост, а вместе с ним увеличивался и спрос на электроэнергию. В гг. ежегодные темпы ее выработки превышали 1,6%. Вместе с тем сблизились и темпы роста промышленных цен и тарифов на электроэнергию, повысилась платежная дисциплина . Произошли заметные сдвиги в структуре потребления электроэнергии и электроемкости отдельных секторов экономики.

Динамика электропотребления сектора услуг в гг. характеризовалась действием двух противоположно направленных тенденций: повышением доли менее электроемкого сектора услуг в структуре ВВП, что явилось фактором сужения совокупного спроса экономики на электроэнергию; формированием новых сегментов рынка услуг (современных систем связи, информационно-вычислительного обслуживания, финансово-кредитных и страховых учреждений и др.), что инициировало рост электропотребления в народном хозяйстве. После 1999 г. с началом экономического роста и расширением спроса на услуги новых сегментов рынка наблюдается тенденция к постепенному снижению электроемкости сектора услуг.

В настоящее время среди крупнейших потребителей электроэнергии – цветная металлургия, топливная промышленность , черная металлургия . По данным Института экономики переходного периода (рис. 1.2.3), около 37 % потребленной промышленностью электроэнергии приходится на долю металлургического комплекса и 33,0 % - на топливно-энергетический комплекс. Соответственно динамика и эффективность использования электроэнергии в этих двух комплексах доминирующе воздействует на характер электроемкости промышленности и экономики в целом.

Рис. 1.2.3. Структура электропотребления в российской промышленности в 2003 г. (доли отраслей рассчитаны Институтом экономики переходного периода по данным Росстата).

В масштабе мировой экономики российская электроэнергетика обладает уникальными особенностями:

· наибольшая территория единой энергосистемы (8 часовых поясов);

· на единицу установленной мощности электростанций Россия располагает наибольшей протяженностью электрических сетей высокого напряжения: 2,05 км/МВт против 0,75-0,8 км/МВт в США и Европе.

Конфигурация электрических сетей и совместная работа электростанций единой энергетической системы Российской Федерации в синхронном режиме позволяют в значительной степени реализовать преимущества по наиболее эффективному использованию генерирующих мощностей, экономичному расходу топлива и обеспечению надежности электроснабжения.

Российская электроэнергетическая система - одна из крупнейших в мировой экономике - входит в первую десятку энергосистем мира по уровню установленных генерирующих мощностей, производству электроэнергии на электростанциях трех основных типов и экспорту (табл. 1.2.5-1.2.12). Установленная мощность электростанций России на конец 2005 г. приблизительно равнялась 217,2 млн кВт (четвертый по величине показатель после США, Китая и Японии) и составляла около 5,6 % совокупной мощности мировой электроэнергетики. Россия находится на пятом месте в мире по уровню мощностей и производства электроэнергии на ГЭС. Доля в совокупной мощности гидроэлектростанций мира составляет 6,1 %; в производстве - около 6,0 %. Россия находится на четвертом месте в мире по уровню установленных мощностей и производства энергии на ТЭС, мощность которых составляет около 5,6 % совокупной мощности ТЭС мира, а выработка электроэнергии - около 5,8 %. Россия занимает пятое место в мире по уровню мощностей и производства атомной электроэнергетики. Следует отметить, что производство 85 % электроэнергии, осуществляемое на АЭС, сосредоточено в 10 странах. В последние годы около двух третей электроэнергии в мире производится на ТЭС и приблизительно по 17 % на ГЭС и АЭС.

Таблица 1.2.5

Установленная мощность российской электроэнергетики по годам (на конец года), млн. кВт

Типы станций

Все электростанции

В том числе:

Примечание. Источник - Росстат

Таблица 1.2.6

Установленная мощность крупнейших национальных энергосистем мира по годам

Страна

200 5

Млн. кВт

Млн. кВт

Млн. кВт

Россия

Германия

Бразилия

Великобритания

Остальной мир

Весь мир

2 929,295

3 279,313

3 871,952

2 929,295

Примечание. Источник - IЕA

Таблица 1.2.7

Производство электроэнергии крупнейшими национальными энергосистемами мира по годам

Страна

Млрд. кВт .ч

Млрд. кВт .ч

Млрд. кВт .ч

Россия

Германия

Великобритания

Бразилия

Примечание. Источник - IЕA

Таблица 1.2.8

Экспорт электроэнергии крупнейшими национальными энергосистемами мира в 2005 г.

Страна

Млрд. кВт. ч

Германия

Парагвай

Швейцария

Чешская Республика

Россия

Примечание. Источник -IEA.

Таблица 1.2.9

Производство и мощность крупнейших гидроэлектростанций в мире в 2005 г.

Страна

Установленная мощность

Страна

Производство электроэнергии

Млн. кВт

Млн. кВт. ч

Бразилия

Бразилия

Россия

Россия

Норвегия

Норвегия

Венесуэла

Весь мир

Весь мир