" основы проектирования баз данных". Этапы проектирования базы данных Основы использования проектирования баз данных

Организация и ведение баз данных средствами СУБД MS ACCESS

Перед созданием базы данных необходимо располагать описанием выбранной предметной области, которое должно охватывать реальные объекты и процессы, иметь всю необходимую информацию для удовлетворения предполагаемых запросов пользователя и определять потребности в обработке данных.

На основе такого описания на этапе проектирования базы данных определяется состав и структура данных, которые должны находиться в базе данных и обеспечивать выполнение необходимых запросов и решение задач пользователя.

Процесс проектирования и создания реляционной базы данных состоит из следующих этапов:

1) создание информационно – логической модели предметной области, т.е. выделение информационных объектов и определение связей между ними;

2) построение логической структуры реляционной базы данных, где каждый объект инфологической модели отображается реляционной таблицей, а связи между таблицами соответствуют выявленным информационным связям между объектами;

3) конструирование таблиц, соответствующих информационным объектам построенной модели данных;

4) создание схемы данных, в которой фиксируются существующие логические связи между таблицами;

5) ввод данных, содержащихся в документах предметной области.

Особый внимание следует уделить первым двум этапам, поскольку без их тщательной проработки невозможно создание БД, полностью удовлетворяющей потребностям пользователя.

Построение инфологической модели данных. Инфологическая модель (ИЛМ) отображает данные предметной области в виде совокупности информационных объектов и связей между ними.

Информационный объект – это информационное описание некоторого реального объекта, процесса или события. Информационный объект образуется совокупностью логически взаимосвязанных реквизитов, представляющих качественные и количественные характеристики некоторой сущности предметной области. Например, объект ТОВАР характеризуется такими реквизитами как наименование, единица измерения, изготовитель, сорт, цена и др.

Каждому информационному объекту присваивают уникальное имя, Например, при описании предметной области поставка товаров будут выделены такие объекты как ТОВАР, ПОСТАВЩИК.

Информационный объект имеет множество реализаций – экземпляров (записей). Например каждый экземпляр объекта ТОВАР представляет конкретный вид продукции. Экземпляр образуется совокупностью конкретных значений реквизитов и должен однозначно идентифицироваться значением ключа информационного объекта. Ключ может состоять из одного (простой ) или нескольких ключевых реквизитов (составной ).



При проектировании реляционной базы данных необходимо решить вопрос о наиболее эффективной структуре данных. При этом преследуются следующие цели:

Обеспечить быстрый доступ к данным в таблицах.

Исключить ненужное повторение данных, которое может являться причиной ошибок при вводе и нерационального использования дискового пространства компьютера.

Обеспечить целостность данных таким образом, чтобы при изменении одних объектов автоматически происходило соответствующее изменение связанных с ним объектов.

Следующим шагом на этапе проектирования ИЛМ, после выявления информационных объектов, является определение отношений между ними.

Отношение – это связь между двумя таблицами, которая показывает, как относятся друг к другу данные в этих таблицах. При создании отношения указываются одинаковые поля в двух разных таблицах. Например, можно создать отношения между таблицами ТОВАР и ПОСТАВЩИК, используя в качестве связующего поля идентификатор товара.

ACCESS поддерживает следующие типы отношений между таблицами:

Одно – однозначные (1:1),

Одно – многозначные (1:М),

Много – многозначные (N:М).

Одно – однозначные связи (1:1) имеют место, когда каждому экземпляру одного объекта (А) соответствует только один экземпляр другого объекта (В) и, наоборот, каждому экземпляру объекта (В) соответствует только один экземпляр объекта (А).

Одно – многозначные связи (1:М) – это такие связи, когда каждому экземпляру одного объекта (А) может соответствовать несколько экземпляров объекта (В), а каждому экземпляру объекта (В) может соответствовать только один экземпляр объекта (А). В такой связи объект А является главным объектом, а объект В – подчиненным.

Много – многозначные (N:М) – имеют место в том случае, если каждому экземпляра объекта А может соответствовать несколько экземпляров объекта В и, наоборот, каждому экземпляру объекта В может соответствовать несколько экземпляров объекта А.Для реализации таких связей используется объект –«связка», который должен иметь идентификатор, образованный из идентификаторов объектов А и В.

В ИЛМ объекты размещены по уровням. На нулевом уровне размещаются объекты, не подчиненные другим объектам. Уровень остальных объектов определяется наиболее длинным путем к объекту от нулевого уровня. Такое размещение объектов дает представление об их иерархической подчиненности, делает модель более наглядной и облегчает понимание связей между объектами.

Построение логической модели базы данных. Логическая структура базы данных является адекватным отображением полученной инфологической модели. Каждый информационный объект модели данных отображается соответствующей реляционной таблицей. Структура таблицы определяется реквизитным составом объекта, где каждый столбец соответствует одному реквизиту. Строки таблицы соответствуют экземплярам объекта и формируются при загрузке таблицы.

Связи между объектами модели данных реализуются одинаковыми реквизитами – ключами связи в соответствующих таблицах. При этом ключом связи всегда должен быть идентификатор главного объекта.

Основные понятия баз данных.

База данных – это совокупность структурированных и взаимосвязанных данных, организованная по определенным правилам, которые предусматривают общие принципы описания, хранения и обработки данных.

Существуют 4 основные модели данных – списки (плоские таблицы), реляционные базы данных, иерархические и сетевые структуры.

В течение многих лет преимущественно использовались плоские таблицы (плоские БД) типа списков в Excel. В настоящее время наибольшее распространение при разработке БД получили реляционные модели данных. Реляционная модель данных является совокупностью простейших двумерных таблиц – отношений (англ. relation), т.е. простейшая двумерная таблица определяется как отношение (множество однотипных записей объединенных одной темой).

От термина relation (отношение) происходит название реляционная модель данных. В реляционных БД используется несколько двумерных таблиц, в которых строки называются записями , а столбцы полями , между записями которых устанавливаются связи. Этот способ организации данных позволяет данные (записи) в одной таблице связывать с данными (записями) в других таблицах через уникальные идентификаторы (ключи) или ключевые поля.

Основные понятия реляционных БД: нормализация, связи и ключи

1. Принципы нормализации:

В каждой таблице БД не должно быть повторяющихся полей;

В каждой таблице должен быть уникальный идентификатор (первичный ключ);

Каждому значению первичного ключа должна соответствовать достаточная информация о типе сущности или об объекте таблицы (например, информация об успеваемости, о группе или студентах);

Изменение значений в полях таблицы не должно влиять на информацию в других полях (кроме изменений в полях ключа).

2. Виды логической связи.

Связь устанавливается между двумя общими полями (столбцами) двух таблиц. Существуют связи с отношением «один-к-одному», «один-ко-многим» и «многие-ко-многим».

один - к - одному – каждой записи из одной таблицы соответствует одна запись в другой таблице;

один - ко - многим – каждой записи из одной таблицы соответствует несколько записей другой таблице;

многие - к - одному – множеству записей из одной таблице соответствует одна запись в другой таблице;

многие - ко - многим – множеству записей из одной таблицы соответствует несколько записей в другой таблице.

Тип отношения в создаваемой связи зависит от способа определения связываемых полей:

Отношение «один-ко-многим» создается в том случае, когда только одно из полей является полем первичного ключа или уникального индекса.

Отношение «один-к-одному» создается в том случае, когда оба связываемых поля являются ключевыми или имеют уникальные индексы.

Отношение «многие-ко-многим» фактически является двумя отношениями «один-ко-многим» с третьей таблицей, первичный ключ которой состоит из полей внешнего ключа двух других таблиц

3. Ключи . Ключ – это столбец (может быть несколько столбцов), добавляемый к таблице и позволяющий установить связь с записями в другой таблице. Существуют ключи двух типов: первичные и вторичные (внешние).

Первичный ключ – это одно или несколько полей (столбцов), комбинация значений которых однозначно определяет каждую запись в таблице. Первичный ключ не допускает значений Null и всегда должен иметь уникальный индекс. Первичный ключ используется для связывания таблицы с внешними ключами в других таблицах.

Внешний (вторичный) ключ - это одно или несколько полей (столбцов) в таблице, содержащих ссылку на поле или поля первичного ключа в другой таблице. Внешний ключ определяет способ объединения таблиц.

Из двух логически связанных таблиц одну называют таблицей первичного ключа или главной таблицей, а другую таблицей вторичного (внешнего) ключа или подчиненной таблицей. СУБД позволяют сопоставить родственные записи из обеих таблиц и совместно вывести их в форме, отчете или запросе.

Существует три типа первичных ключей: ключевые поля счетчика (счетчик), простой ключ и составной ключ.

Поле счетчика (Тип данных «Счетчик»). Тип данных поля в базе данных, в котором для каждой добавляемой в таблицу записи в поле автоматически заносится уникальное числовое значение.

Простой ключ . Если поле содержит уникальные значения, такие как коды или инвентарные номера, то это поле можно определить как первичный ключ. В качестве ключа можно определить любое поле, содержащее данные, если это поле не содержит повторяющиеся значения или значения Null.

Составной ключ . В случаях, когда невозможно гарантировать уникальность значений каждого поля, существует возможность создать ключ, состоящий из нескольких полей. Чаще всего такая ситуация возникает для таблицы, используемой для связывания двух таблиц многие - ко - многим.

Необходимо еще раз отметить, что в поле первичного ключа должны быть только уникальные значения в каждой строке таблицы, т.е. совпадение не допускается , а в поле вторичного или внешнего ключа совпадение значений в строках таблицы допускается .

Если возникают затруднения с выбором подходящего типа первичного ключа, то в качестве ключа целесообразно выбрать поле счетчика.

Программы, которые предназначены для структурирования информации, размещения ее в таблицах и манипулирования данными называются системами управления базами данных (СУБД): MS SQL Server, Oracle, Informix, Sybase, DB2, MS Access и т. д.

Основы проектирования баз данных.

Создание БД начинается с проектирования.

Этапы проектирования БД:

· Исследование предметной области;

· Анализ данных (сущностей и их атрибутов);

· Определение отношений между сущностями и определение первичных и вторичных (внешних) ключей.

В процессе проектирования определяется структура реляционной БД (состав таблиц, их структура и логические связи). Структура таблицы определяется составом столбцов, типом данных и размерами столбцов, ключами таблицы.

К базовым понятиями модели БД «сущность – связь» относятся: сущности, связи между ними и их атрибуты (свойства).

Сущность – любой конкретный или абстрактный объект в рассматриваемой предметной области. Сущности – это базовые типы информации, которые хранятся в БД (в реляционной БД каждой сущности назначается таблица). К сущностям могут относиться: студенты, клиенты, подразделения и т.д. Экземпляр сущности и тип сущности - это разные понятия. Понятие тип сущности относится к набору однородных личностей, предметов или событий, выступающих как целое (например, студент, клиент и т.д.). Экземпляр сущности относится, например, к конкретной личности в наборе. Типом сущности может быть студент, а экземпляром – Петров, Сидоров и т. д.

Атрибут – это свойство сущности в предметной области. Его наименование должно быть уникальным для конкретного типа сущности. Например, для сущности студент могут быть использованы следующие атрибуты: фамилия, имя, отчество, дата и место рождения, паспортные данные и т.д. В реляционной БД атрибуты хранятся в полях таблиц.

Связь – взаимосвязь между сущностями в предметной области. Связи представляют собой соединения между частями БД (в реляционной БД – это соединение между записями таблиц).

Сущности – это данные, которые классифицируются по типу, а связи показывают, как эти типы данных соотносятся один с другим. Если описать некоторую предметную область в терминах сущности – связь, то получим модель сущность - связь для этой БД.

Рассмотрим предметную область: Деканат (Успеваемость студентов)

В БД «Деканат» должны храниться данные о студентах, группах студентов, об оценках студентов по различным дисциплинам, о преподавателях, о стипендиях и т.д. Ограничимся данными о студентах, группах студентов и об оценках студентов по различным дисциплинам. Определим сущности, атрибуты сущностей и основные требования к функциям БД с ограниченными данными.

Основными предметно-значимыми сущностями БД «Деканат» являются: Студенты, Группы студентов, Дисциплины, Успеваемость.

Основные предметно-значимые атрибуты сущностей:

· студенты – фамилия, имя, отчество, пол, дата и место рождения, группа студентов;

· группы студентов – название, курс, семестр;

· дисциплины – название, количество часов

· успеваемость – оценка, вид контроля.

Основные требования к функциям БД:

· выбрать успеваемость студента по дисциплинам с указанием общего количества часов и вида контроля;

· выбрать успеваемость студентов по группам и дисциплинам;

· выбрать дисциплины, изучаемые группой студентов на определенном курсе или определенном семестре.

Из анализа данных предметной области следует, что каждой сущности необходимо назначить простейшую двумерную таблицу (отношения). Далее необходимо установить логические связи между таблицами. Между таблицами Студенты и Успеваемость необходимо установить такую связь, чтобы каждой записи из таблицы Студенты соответствовало несколько записей в таблице Успеваемость, т.е. один – ко – многим, так как у каждого студента может быть несколько оценок.

Логическая связь между сущностями Группы – Студенты определена как один – ко – многим исходя из того, что в группе имеется много студентов, а каждый студент входит в состав одной группы. Логическая связь между сущностями Дисциплины – Успеваемость определена как один – ко – многим, потому что по каждой дисциплине может быть поставлено несколько оценок различным студентам.

à стрелка является условным обозначением связи: один – ко – многим.

Суть проектирования баз данных (БД), как и любого другого процесса проектирования, в создании описания новой, прежде не существовавшей в таком виде системы, которая при её реализации способна предполагаемо функционировать в соответствующих условиях. Из этого следует, что этапы проектирования базы данных должны последовательно и логически связано отражать суть этого процесса.

Содержание проектирования баз данных и этапность

Замысел проектирования основывается на какой-либо сформулированной общественной потребности. У этой потребности есть среда её возникновения и целевая аудитория потребителей, которые будут пользоваться результатом проектирования. Следовательно, процесс проектирования баз данных начинается с изучения данной потребности с точки зрения потребителей и функциональной среды её предполагаемого размещения. То есть, первым этапом становится сбор информации и определение модели предметной области системы, а также – взгляда на неё с точки зрения целевой аудитории. В целом, для определения требований к системе производится определение диапазона действий, а также границ приложений БД.

Далее проектировщик, уже имеющий определённые представления о том, что ему нужно создать, уточняет предположительно решаемые приложением задачи, формирует их список (особенно, если в проектной разработке большая и сложная БД), уточняет последовательность решения задач и производит анализ данных. Такой процесс – тоже этапная проектная работа, но обычно в структуре проектирования эти шаги поглощаются этапом концептуального проектирования – этапом выделения объектов, атрибутов, связей.

Создание концептуальной (информационной модели) предполагает предварительное формирование концептуальных требований пользователей, включая требования в отношении приложений, которые могут и не быть сразу реализованным, но учёт которых позволит в будущем повысить функциональность системы. Имея дело с представлениями объектов-абстракций множества (без указания способов физического хранения) и их взаимосвязями, концептуальная модель содержательно соответствует модели предметной области. Поэтому в литературе первый этап проектирования БД называется инфологическим проектированием.

Далее отдельным этапом (либо дополнением к предыдущему) следует этап формирования требований к операционной обстановке, где оцениваются требования к вычислительным ресурсам, способным обеспечить функционирование системы. Соответственно, чем больше объем проектируемой БД, чем выше пользовательская активность и интенсивность обращений, тем выше требования предъявляются к ресурсам: к конфигурации компьютера к типу и версии операционной системы. Например, многопользовательский режим работы будущей базы данных требует сетевого подключения с использованием операционной системы, соответствующей многозадачности.

Следующим этапом проектировщик должен выбрать систему управления базой данных (СУБД), а также инструментальные средства программного характера. После этого концептуальную модель необходимо перенести в совместимую с выбранной системой управления модель данных. Но нередко это сопряжено с внесением поправок и изменений в концептуальную модель, поскольку не всегда взаимосвязи объектов между собой, отражённые концептуальной моделью, могут быть реализованы средствами данной СУБД.

Это обстоятельство определяет возникновение следующего этапа – появления обеспеченной средствами конкретной СУБД концептуальной модели. Данный шаг соответствует этапу логического проектирования (создания логической модели).

Наконец, финальным этапом проектирования БД становится физическое проектирование – этап увязки логической структуры и физической среды хранения.

Таким образом, основные этапы проектирования в детализированном виде представлены этапами:

  • инфологического проектирования,
  • формирования требований к операционной обстановке
  • выбора системы управления и программных средств БД,
  • логического проектирования,
  • физического проектирования

Ключевые из них ниже будут рассмотрены подробнее.

Инфологическое проектирование

Идентификация сущностей составляет смысловую основу инфологического проектирования. Сущность здесь – это такой объект (абстрактный или конкретный), информация о котором будет накапливаться в системе. В инфологической модели предметной области в понятных пользователю терминах, которые не зависят от конкретной реализации БД, описывается структура и динамические свойства предметной области. Но термины, при этом берутся в типовых масштабах. То есть, описание выражается не через отдельные объекты предметной области и их взаимосвязи, а через:

  • описание типов объектов,
  • ограничения целостности, связанные с описанным типом,
  • процессы, приводящие к эволюции предметной области – переходу её в другое состояние.

Инфологическую модель можно создавать с помощью нескольких методов и подходов:

  1. Функциональный подход отталкивается от поставленных задач. Функциональным он называется, потому что применяется, если известны функции и задачи лиц, которые с помощью проектируемой базы данных будут обслуживать свои информационные потребности.
  2. Предметный подход во главу угла ставит сведения об информации, которая будет содержаться в базе данных, при том, что структура запросов может не быть определена. В этом случае в исследованиях предметной области ориентируются на её максимально адекватное отображение в базе данных в контексте полного спектра предполагаемых информационных запросов.
  3. Комплексный подход по методу «сущность-связь» объединяет достоинства двух предыдущих. Метод сводится к разделению всей предметной области на локальные части, которые моделируются по отдельности, а затем вновь объединяются в цельную область.

Поскольку использование метода «сущность-связь» является комбинированным способом проектирования на данном этапе, он чаще других становится приоритетным.

Локальные представления при методическом разделении должны, по возможности, включать в себя информацию, которой бы хватило для решения обособленной задачи или для обеспечения запросов какой-то группы потенциальных пользователей. Каждая из этих областей содержит порядка 6-7 сущностей и соответствует какому-либо отдельному внешнему приложению.

Зависимость сущностей отражается в разделении их на сильные (базовые, родительские) и слабые (дочерние). Сильная сущность (например, читатель в библиотеке) может существовать в БД сама по себе, а слабая сущность (например, абонемент этого читателя) «привязывается» к сильной и отдельно не существует.

Следует разделять понятия «экземпляр сущности» (объект, характеризующийся конкретными значениями свойств) и понятие «тип сущности» – объект, для которого характерно общее имя и список свойств.

Для каждой отдельной сущности выбираются атрибуты (набор свойств), которые в зависимости от критерия могут быть:

  • идентифицирующими (с уникальным значением для сущностей этого типа, что делает их потенциальными ключами) или описательными;
  • однозначными или многозначными (с соответствующим количеством значений для экземпляра сущности);
  • основными (независимыми от остальных атрибутов) или производными (вычисляемыми, исходя из значений иных атрибутов);
  • простыми (неделимыми однокомпонентными) или составными (скомбинированными из нескольких компонентов).

После этого производится спецификация атрибута, спецификация связей в локальном представлении (с разделением на факультативные и обязательные) и объединение локальных представлений.При числе локальных областей до 4-5 их можно объединить за один шаг. В случае увеличения числа, бинарное объединение областей происходит в несколько этапов.

В ходе этого и других промежуточных этапов находит своё отражение итерационная природа проектирования, выражающаяся здесь в том, что для устранения противоречий необходимо возвращаться на этап моделирования локальных представлений для уточнения и изменения (например, для изменения одинаковых названий семантически разных объектов или для согласования атрибутов целостности на одинаковые атрибуты в разных приложениях).

Выбор системы управления и программных средств БД

От выбора системы управления БД зависит практическая реализация информационной системы. Наиболее значимыми критериями в процессе выбора становятся параметры:

  • типа модели данных и её соответствие потребностям предметной области,
  • запас возможностей в случае расширения информационной системы,
  • характеристики производительности выбранной системы,
  • эксплуатационная надёжность и удобство СУБД,
  • инструментальная оснащённость, ориентированная на персонал администрирования данных,
  • стоимость самой СУБД и дополнительного софта.

Ошибки в выборе СУБД практически наверняка впоследствии спровоцируют необходимость корректировать концептуальную и логическую модели.

Логическое проектирование БД

Логическая структура БД должна соответствовать логической модели предметной области и учитывать связь модели данных с поддерживаемой СУБД. Поэтому этап начинается с выбора модели данных, где важно учесть её простоту и наглядность.

Предпочтительнее, когда естественная структура данных совпадает с представляющей её моделью. Так, например, если в данные представлены в виде иерархической структуры, то и модель лучше выбирать иерархическую. Однако на практике такой выбор чаще определяется системой управления БД, а не моделью данных. Поэтому концептуальная модель фактически транслируется в такую модель данных, которая совместима с выбранной системой управления БД.

Здесь тоже находит отражение природа проектирования, которая допускает возможность (или необходимость) вернуться к концептуальной модели для её изменения в случае, если отражённые там взаимосвязи между объектами (или атрибуты объектов) не удастся реализовать средствами выбранной СУБД.

По завершению этапа должны быть сформированы схемы баз данных обоих уровней архитектуры (концептуального и внешнего), созданные на языке определения данных, поддерживаемых выбранной СУБД.

Схемы базы данных формируются с помощью одного из двух разнонаправленных подходов:

  • либо с помощью восходящего подхода, когда работа идёт с нижних уровней определения атрибутов, сгруппированных в отношения, представляющие объекты, на основе существующих между атрибутами связей;
  • либо с помощью обратного, нисходящего, подхода, применяемого при значительном (до сотен и тысяч) увеличении числа атрибутов.

Второй подход предполагает определение ряда высокоуровневых сущностей и их взаимосвязей с последующей детализацией до нужного уровня, что и отражает, например, модель, созданная на основе метода «сущность-связь». Но на практике оба подхода, как правило, комбинируются.

Физическое проектирование БД

На следующем этапе физического проектирования БД логическая структура отображается в виде структуры хранения БД, то есть увязывается с такой физической средой хранения, где данные будут размещены максимально эффективно. Здесь детально расписывается схема данных с указанием всех типов, полей, размеров и ограничений. Помимо разработки индексов и таблиц, производится определение основных запросов.

Построение физической модели сопряжено с решением во многом противоречивых задач:

  1. задачи минимизации места хранения данных,
  2. задачи достижения целостности, безопасности и максимальной производительности.

Вторая задача вступает в конфликт с первой, поскольку, например:

  • для эффективного функционирования транзакций нужно резервировать дисковое место под временные объекты,
  • для увеличения скорости поиска нужно создавать индексы, число которых определяется числом всех возможных комбинаций участвующих в поиске полей,
  • для восстановления данных будут создаваться резервные копии базы данных и вестись журнал всех изменений.

Всё это увеличивает размер базы данных, поэтому проектировщик ищет разумный баланс, при котором задачи решаются оптимально путём грамотного размещения данных в пространстве памяти, но не за счёт средств защиты базы дынных, куда входит как защита от несанкционированного доступа, так и защита от сбоев.

Для завершения создания физической модели проводят оценку её эксплуатационных характеристик (скорость поиска, эффективность выполнения запросов и расхода ресурсов, правильность операций). Иногда этот этап, как и этапы реализации базы данных, тестирования и оптимизации, а также сопровождения и эксплуатации, выносят за пределы непосредственного проектирования БД.

  • Перевод

Базы данных используются повсюду, включая большую часть проектов в мире веб-разработки. Всё, начиная от простейших блогов и каталогов, до серьезных социальных веб-проектов. Независимо от сложности сайта и соответствующей базы данных, каждый из них требует тщательного проектирования, чтобы работать эффективно, а также надежно.


В этой статье мы рассмотрим основы разработки хорошего плана базы данных, независимо от ее окончательного предназначения. Для всех вариантов структуры баз данных есть набор стандартных правил и лучших практик, которыми следует пользоваться. Они будут способствовать базе данных оставаться организованной и сделает ее взаимодействие с сайтом более разумным и эффективным способом.

Какой функционал требуется от базы данных

Первый метод, используемый при планировании, это обычный мозговой штурм, делая записи на бумаге или как-то еще, в зависимости от того, что требуется хранить в базе данных, и что будет требоваться сайту. Старайтесь не думать об конкретных полях, таблицах, которые будут использоваться в конкретном случае - все специфичные моменты будут рассмотрены вами позже. Ваша цель на данном этапе состоит в том, чтобы получить общую и полную картину структуры базы данных, которую потом будете уточнять и делать более подробной. Зачастую в дальнейшем может быть более трудным добавить какие-то элементы в ваш план, нежели на первоначальном этапе.
Фото: binaryape
Отстранитесь от базы данных. Попытайтесь подумать, что будет требоваться от сайта? Например, если требуется сделать сайт, объединяющий людей, вы, возможно, сразу начнете думать о данных, которые будут хранить пользователи. Забудьте, отложите это на потом. Лучше запишите, что пользователи и информация о них должна храниться в базе данных. А что еще? Что пользователи будут делать на вашем сайте? Будут ли они публиковать записи, загружать файлы, фотографии, писать друг другу сообщения? Следовательно, база данных должна хранить всю эту информацию: записи, файлы, фотографии, сообщения и т. д.
Как будут взаимодействовать пользователи с вашим сайтом? Будет ли у них необходимость в поиске, например, их любимых рецептов, иметь доступ к записям, доступным конкретному сообществу, искать продукты или смотреть список недавно просмотренных и купленных продуктов? В базе данных должна быть предусмотрена возможность хранить рецепты, «закрытые» записи, доступные определенному кругу пользователей, информацию о продуктах, а также возможность связи определенного продукта и пользователя.

Определение необходимых таблиц и полей

Следующий этап заключается в том, чтобы определить, какие именно таблицы и поля потребуются в базе данных. Это ядро разработки и самая сложная её часть. Использование правильных методов связки таблиц, определение структуры данных в каждой таблице, выявление необходимости разброса этих данных по разным таблицам, - все эти проблемы всплывают при непосредственном проектировании базы данных. Теперь вам необходимо определить список очевидно необходимых таблиц и полей, будьте как можно более конкретным. В ходе этого процесса, какие-то элементы могут быть перестроены либо реорганизованы в целях повышения эффективности и безопасности базы данных.

Используйте инструмент моделирования данных

Теперь, когда вы знаете, что сайт должен будет делать, самое время определить, какую конкретно информацию нужно будет хранить. Очень уместным здесь окажется инструмент для проектирования баз данных, особенно имеющий возможность создавать визуальные модели базы данных, например, MySQL Workbench либо . Gliffy является отличным бесплатным он-лайн инструментом для создания различных блок-схем и моделей баз данных.

Есть также более известный, качественный, на мой взгляд, инструмент - Microsoft Visio (только под Windows, цена $249.99). Но не пугайтесь, есть более дешевые альтернативы, многие из которых являются open-source проектами, в том числе два, упомянутых выше.
Ознакомьтесь с общими графическими обозначениями и стандартными визуальными элементами, необходимым для создания модели базы данных, и начните предварительное планирование с помощью блок-схем и диаграмм. Это позволит избежать логических ошибок, прежде чем будет создана уже какая-нибудь конкретная база данных.

Группировка и разделение данных

Что касается полей, также важно знать, когда группировать определенную часть данных, а когда нет. Хороший способ определить, какая информация должна быть в одном поле или наоборот, подумать, будет ли необходимость изменять какую-либо её часть? Например, нужно ли хранить адрес, разбив его на составляющие: 1) улица, 2) город, 3) штат, 4) почтовый код, 5) страна?
Это неотъемлемая часть функционала сайта (возможно, пользователи или администраторы захотят искать других пользователей по адресу или штату), или просто увеличение места, занимаемого базой данных на диске? Если это не столь важно, зачем тогда нагружать базу данных на изменение 5 полей, когда можно обновить всего лишь одно строковое поле. Более удобным может быть вариант получения этих данных из HTML-формы, где поля разделены, а уже перед добавлением адреса в базу данных объединять значения из соответствующих полей в одну строку.
Это только один пример, но всегда имейте представление о наиболее эффективные способы организации полей таблицы, когда объединять их, когда содержать отдельно, ради поддержания функциональности сайта.

Нормализация базы данных

Нормализация представляет набор руководящих принципов, созданных для организации более эффективного хранения информации. Мы уже упоминали о некоторых важных основных практиках, которые входят в наиболее популярные нормальные формы. Есть пять нормальных форм. Было бы полезным ознакомиться с этими нормальными формами и разрабатывать базы данных в соответствии с их требованиями.
Нормализация базы данных большая тема, но уже понимание ее основ может вам чрезвычайно помочь. Чтобы иметь общее представление о каждой нормальной форме и нормализации в целом, не забудьте взглянуть на

В настоящее время жизнь человека настолько насыщена информацией, что для управления ею, необходимо создание баз и банков данных, используемых в различных областях деятельности. Обработка данных развивалась от примитивных методов 50х годов до сложных интегрированных систем сегодняшнего дня.

Основные принципы проектирования реляционных баз данных

Модели данных - некоторая абстракция, которая, будучи приложена к конкретным данным, позволяет пользователям и разработчикам трактовать их уже как информацию, то есть сведения, содержащие не только данные, но и взаимосвязь между ними.

Существуют следующие основные модели данных:

Модели, основанные на инвертированных списках - БД, организованная с помощью инвертированных списков, построена таким образом, что таблицы, и пути доступа к ним были видны пользователям, при этом строки таблиц физически упорядочены в некоторой последовательности.

Иерархические модели данных - БД, основанная на иерархической модели, состоит из упорядоченного набора деревьев. Каждое дерево из одного «корневого» и упорядоченного набора из нуля или более связанных между ними поддеревьев (потомки). Целостность связи между ними поддерживается автоматически.

В БД с сетевой структурой данные поддеревья могут иметь любое, число корневых. Фактически сетевая БД состоит из набора записей между этими записями.

В настоящие время в большинстве БД используют реляционные модели данных. Реляционная модель это особый метод рассмотрения данных, содержащий данные (в виде таблиц), и способы работы и манипуляции с ними (в виде связей). Реляционная модель предполагает три концептуальных элемента: структура, целостность и обработка данных.

Таблица в реляционной базе данных рассматривается как непосредственное «хранилище» данных. Традиционно в реляционных схемах таблицу называют отношением. Строку таблицы называют кортежем, а столбец - атрибутом. При этом атрибуты имеют уникальные (в пределах отношения) имена. Количество кортежей называют кардинальным числом, а количество атрибутов - степенью. Для отношения предусматривается идентификатор, то есть один из нескольких атрибутов, значения которых в одно и то же время не бывают одинаковыми - идентификатор называют первичным ключом.

Домен - это множество допустимых однородных значений для того или иного атрибута. Таким образом, домен можно рассматривать как именованное множество данных, причем составной частью этого множества являются логически неделимые единицы (в качестве домена могут выступать, например, перечень фамилий сотрудников учреждения, однако не все фамилии могут присутствовать в таблице).

Отношение содержит две части - заголовок и собственную содержательную часть. Заголовок содержит конечное множество атрибутов, а содержательная часть (тело отношения) - множество имени атрибута и его значения.

В реляционной БД, в отличие от других моделей, пользователь указывает, какие данные для него необходимы, а не то, как это сделать. Формальной основой реляционной модели БД являются реляционная алгебра, основанная на теории множества и рассматривающая специальные операторы над отношениями, и реляционное исчисление, базирующееся на математической логике.

Существует много подходов к определению реляционной алгебры, которые различаются набором операций и способом их интерпретации. По Кодду набор алгебраических операций состоит из восьми основных:

  • 1. Выборка отношения;
  • 2. Проекция отношения;
  • 3. Объединение отношений;
  • 4. Пересечение отношений;
  • 5. Вычитание отношений;
  • 6. Произведение отношений;
  • 7. Соединение отношений;
  • 8. Деление отношений;

Помимо вышеперечисленных, есть ряд особых операций, характерных для работы с БД: как результат операции «переименования» получается отношение, набор кортежей которого совпадает с телом первоначального отношения, но имена атрибутов изменены. Операция «присваивания» позволяет сохранить результат вычисления реляционного выражения в существующем отношении БД. Отсюда следует, что если результатом реляционной операции является некоторое отношение, то имеется возможность образовывать реляционные выражения, в которых вместо первоначального отношения (отношения-операнда) будет использоваться вложенное реляционное выражение. Это происходит благодаря тому, что операции реляционной алгебры действительно замкнуты относительно понятия отношения.

Одно из основных требований к организации реляционной БД - это обеспечение возможности поиска одних картежей по возможным значениям других, для чего необходимо установить между ними связь.

Связь - это функциональная зависимость между двумя сущностями (возможна связь сущности с самой собой). Если между сущностями существует связь, то экземпляры связи одной сущности ссылаются или некоторым образом связаны с экземплярами другой.

На логическом уровне можно установить связи:

  • 1. один-к-одному;
  • 2. один-ко-многим;
  • 3. многие-ко-многим;
  • 4. многие-к-одному;

Этапы физической реализации проектируемой базы данных

Реализация - это этап превращения концептуальной модели в функционирующую базу данных. Реализация включает этапы:

  • 1. Выбор и приобретение СУБД.
  • 2. Преобразование концептуальной модели в физическую модель.
  • 3. Построение словаря.
  • 4. Заполнение базы данных.
  • 5. Создание прикладных программ.
  • 6. Обучение пользователей.