Что такое радиус колеса автомобиля. Качение шины. Не бывает у шины радиуса

Что такое радиус колеса автомобиля. Качение шины. Не бывает у шины радиуса

Для подбора шин и определения по их размерам радиусов качения колеса необходимо знать распределение нагрузки по мостам.

У легковых автомобилей распределение нагрузки от полной массы по мостам зависит в основном от компоновки. При классической компоновке на задний мост приходится 52…55% нагрузки от полной массы, для переднеприводных автомобилей 48%.

Радиус качения колеса r к выбирается в зависимости от нагрузки на одно колесо. Наибольшая нагрузка на колесо определяется положением центра масс автомобиля, которое устанавливается по предварительному эскизу или прототипу автомобиля.

Следовательно, нагрузку на каждое колесо передней и задней оси автомобиля соответственно можно определить по формулам:

P 1 = G 1 / 2, (6)

P 2 = G 2 / 2. (7)

где G 1 , G 2 - нагрузки от полной массы на переднюю и заднюю ось автомобиля соответственно.

Расстояние от передней оси до центра масс найдем по формуле:

a=G 2 *L/G a , (8)

где G a – модуль сил тяжести автомобиля (Н);

L – база автомобиля.

Расстояние от центра масс до задней оси

Выбираем шины исходя из нагрузки на каждое колесо по Таблице 1.

Таблица 1 – Шины автомобилей

Обозначение шины Обозначение шины
155-13/6,45-13 240-508 (8,15-20)
165-13/6,45-13 260-508P (9,00P-20)
5,90-13 280-508 (10,00-20)
155/80 R13 300-508 (11,00R-20)
155/82 R13 320-508 (12,00-20)
175/70 R13 370-508 (14,00-20)
175-13/6,95-13 430-610 (16,00-24)
165/80 R13 500-610 (18,00-25)
6,40-13 500-635 (18,00-25)
185-14/7,35-14 570-711 (21,00-78)
175-16/6,95-16 570-838 (21,00-33)
205/70 R14 760-838 (27,00-33)
6,50-16
8,40-15
185/80 R15
220-508P (7,50R-20)
240-508 (8,25-20)
240-381 (8,25-20)

Например: 165-13/6,45-13 с максимальной нагрузкой 4250 Н, 165 и 6,45 - ширина профиля мм и дюймах соответственно, посадочный диаметр обода 13 дюймов. По этим размерам можно определить радиус колеса, находящегося в свободном состоянии

r c = + b, (10)

где b – ширина профиля шины (мм);

d – диаметр обода шины (мм), (1 дюйм = 25,4 мм)

Радиус качения колеса r к определяется с учетом деформации, зависящей от нагрузки

r к = 0,5 * d + (1 - k) * b, (11)

где k – коэффициент радиальной деформации. Для стандартных и широкопрофильных шин k принимают 0,1…0,16.

Расчет внешней характеристики двигателя

Расчет начинается с определения мощности N ev , необходимой для обеспечения движения с заданной максимальной скоростью V max .

При установившемся движении автомобиля мощность двигателя в зависимости от дорожных условий может быть выражена следующей формулой (кВт):

N ev = V max * (G a * + K в * F * V ) / (1000 * * K p), (12)

где - коэффициент суммарного дорожного сопротивления для легковых автомобилей определяется по формуле:

0,01+5*10 -6 * V . (13)

K в – коэффициент обтекаемости, K в = 0,3 Н*с 2* м -4 ;

F – лобовая площадь автомобиля, м 2 ;

КПД трансмисии;

K p – коэффициент коррекции.

Коэффициент суммарного дорожного сопротивления для грузовых автомобилей и автопоездов

=(0,015+0,02)+6*10 -6 * V . (14)

Лобовую площадь для легковых автомобилей находим из формулы:

F A = 0,8 * B г * H г, (15)

где B г – габаритная ширина;

H г – габаритная высота.

Лобовая площадь для грузовых автомобилей

F A = B * H г, (16)

Частота вращения коленчатого вала двигателя

Частота вращения коленчатого вала двигателя n v , соответствующая максимальной скорости автомобиля, определяется из уравнения (мин -1) :

n v = Vmax * , (17)

где - коэффициент оборотистости двигателя.

У существующих легковых автомобилей коэффициент оборотистости двигателя лежит в приделах 30…35, у грузовых с карбюраторным двигателем – 35…45; у грузовых с дизельным двигателем– 30…35.

Автомобиль (трактор) движется в результате действия на него различных сил, которые делятся на движущие силы и силы сопротивления движению. Основной движущей силой является тяговая сила, приложенная к ведущим колесам. Тяговая сила возникает в результате работы двигателя и вызвана взаимодействием ведущих колес с дорогой. Тяговую силу P к определяют как отношение момента на полуосях к радиусу ведущих колес при равномерном движении автомобиля. Следовательно, для определения тяговой силы необходимо знать величину радиуса ведущего колеса. Поскольку на колеса автомобиля устанавливаются эластичные пневматические шины, то величина радиуса колеса во время движения изменяется. В связи с этим различают следующие радиусы колес:

1.Номинальный – радиус колеса в свободном состоянии: r н =d/2+H, (6)

где d – диаметр обода, м;

H – полная высота профиля шины, м.

2.Статический r с – расстояние от поверхности дороги до оси нагруженного неподвижного колеса.

r с =(d/2+H)∙λ , (7)

где λ–коэффициент радиальной деформации шины.

3.Динамический r д –расстояние от поверхности дороги до оси катящегося нагру женного колеса. Этот радиус увеличивается с уменьшением воспринимаемой нагрузки колесом G к и увеличением внутреннего давления воздуха в шине p ш.

При увеличении скорости автомобиля под действием центробежных сил шина растягивается в радиальном направлении, вследствие чего радиус r д увеличивается. При качении колеса изменяется и деформация поверхности качения в сравнении с неподвижным колесом. Поэтому плечо приложения равнодействующих касательных реакций дороги r д отличается от r с. Однако, как показали эксперименты, для практических тяговых расчетов можно принимать r с ~ r д.

4 Кинематический радиус (качения) колеса r к – радиус такого условного недеформирующегося кольца, которое имеет с данным эластичным колесом одинаковую угловую и линейную скорости.

У колеса, катящегося под действием крутящего момента, элементы протектора, входящие в контакт с дорогой, сжаты, и колесо при равных частотах вращения проходит меньший путь, чем во время свободного качения; у колеса же, нагруженного тормозным моментом элементы протектора, входящие в контакт с дорогой, растянуты. Поэтому тормозное колесо проходит при равных числах оборотов несколько больший путь, чем свободно катящееся колесо. Таким образом, под действием крутящего момента радиус r к – уменьшается, а под действием тормозного момента – увеличивается. Для определения величины r к методом “меловых отпечатков” на дороге мелом или краской наносят поперечную линию, на которую накатывается колесо автомобиля, а затем оставляет на дороге отпечатки.

Замерив расстояние l между крайними отпечатками, определяют радиус качения по формуле: r к = l / 2π∙n , (8)

где n – частота вращения колеса, соответ ствующая расстоянию l .

В случае полного буксования колеса расстояние l = 0 и радиус r к = 0. Во время скольжения невращающихся колес (“ЮЗ”) частота вращения n=0 и r к .

Все силы, действующие на автомобиль со стороны дороги, передаются через колеса. Радиус колеса, снабженного пневматической шиной, в зависимости от веса груза, режима движения, внутреннего давления воздуха, износа протектора, может изменяться.

У колес различают следующие радиусы:

1) свободный; 3) динамический;

2) статический; 4) кинематический.

Свободный радиус (r св) - это расстояние от оси неподвижного и ненагруженного колеса до наиболее удаленной части беговой до­рожки. Для одного и того же колеса величина Rсв зависит только от величины внутреннего давления воздуха в шине.

Свободный радиус колеса указывается в технической характеристике шины. Если указанная характеристика отсутствует в справочных данных, то ее значение можно определить по маркировке шины.

Статический радиус (r ст) - это расстояние от центра неподвижного колеса, нагруженного только нормальной силой, до опорной плоскости. Значение статического радиуса меньше свободного на величину радиальной деформации:

r ст = r св - h z = r св - R z /С ш, (5.1)

где h z = R z /С ш - радиальная (нормальная) деформация шины, м;

R z - нормальная реакция дороги, Н;

С ш - радиальная (нормальная) жесткость шины, Н/м.

Нормальную реакцию дороги, действующую на одно колесо можно определить по формуле:

R z = G О / 2, (5.2)

где G О - вес автомобиля, приходящийся на определенную ось.

Из формулы (1) находим значение радиальной жесткости шины:

С ш = R z / r св - r ст, (5.3)

Радиальная жесткость шины зависит от ее конструкции и внутреннего давления воздуха р ш. Если известна зависимость С ш от р ш, то величину деформации шины можно определить при любом внутреннем давлении воздуха. При номинальном давлении воздуха и нагрузке значение статического радиуса колеса можно найти по формуле:

r ст = 0,5d о + (1 - l ш)Н ш, (5.4)

где d o - диаметр обода колеса, м;

Н ш - высота профиля шины в свободном состоянии, м;

l ш - коэффициент радиальной деформации шины.

Для шин обычного профиля, а также широкопрофильных шин l ш = 0,10 - 0,15; для арочных и пневмокатков l ш =0,20 - 0,25.

Номинальное значение r ст колеса применительно к номинальной нагрузке и внутреннему давлению воздуха указывается в технической характеристике шины.

Динамический радиус (r д) - это расстояние от центра катящегося колеса до опорной плоскости. Величина r д зависит в основном от внутреннего давления воздуха в шине, вертикальной нагрузки на колесо и скорости его движения. При увеличении скорости автомобиля динамический радиус несколько возрастает, что объясняется растяжением шины центробежными силами инерции.

Кинематический радиус (r к) - это радиус условного не дефомирующегося катящегося без скольжения колеса, которое имеет с данным эластичным колесом одинаковые угловую и линейную скорости:

r к = V x /w к. (5.5)

Величину r к определяют опытным путем, для этого замеряют путь S, проходимый автомобилем за n к полных оборотов:

r к = V x /w к = V x * t /w к* t = S/2p n к, (5.6)

где V x - линейная скорость колеса;

w к - угловая скорость колеса;

t - время движения.

Разница между радиусами r д и r к обусловлена наличием проскальзывания в области контакта шины с дорогой.

В случае полного буксования колеса путь, проходимый колесом равен нулю S = 0, а следовательно r к = 0. Во время скольжения заторможенных невращающихся (блокированных) колес, т.е. при движении юзом, n к = 0 и r к ® ¥.

При движении автомобиля по дорогам с твердым покрытием и хорошим сцеплением приближенно принимают r к = r д = r с = r.

В общем случае колесо автомобиля состоит из жесткого обода, эластичных боковин и контактного отпечатка. Контактный отпечаток шины представляет собой элементы шины, контактирующие с опорной поверхностью в рассматриваемый момент времени. Его форма и размеры зависят от типа шины, нагрузки на шину, давления воздуха, деформационных свойств опорной поверхности и ее профиля.

В зависимости от соотношения деформаций колеса и опорной поверхности возможны следующие виды движения:

Эластичного колеса по недеформируемой поверхности (движение колеса по дороге с твердым покрытием);

Жесткого колеса по деформируемой поверхности (движение колеса по рыхлому снегу);

Деформируемого колеса по деформируемой поверхности (движение колеса по деформируемому грунту, рыхлому снегу с пониженным давлением воздуха).

В зависимости от траектории возможны прямолинейное и криволинейное движения. Заметим, что сопротивление криволинейному движению превышает сопротивление прямолинейному. Это особенно касается трехосных автомобилей с балансирной задней тележкой. Так, при движении трехосного автомобиля по траектории с минимальным радиусом на дороге с высоким коэффициентом сцепления остаются следы от шин, с выхлопной трубы идет черный дым, резко увеличивается расход топлива. Все это является следствием возростания сопротивления криволинейному движению в несколько раз по сравнению с прямолинейным.

Ниже нами рассмотрены радиусы эластичного колеса для частного случая- при прямолинейном движении колеса на недеформируемой опорной поверхности.

Существуют четыре радиуса автомобильного колеса:

1) свободный; 2) статический; 3) динамический; 4) радиус качения колеса.

Свободный радиус колеса - характеризует размер колеса в ненагруженном состоянии при номинальном давлении воздуха в шине. Этот радиус равен половине наружного диаметра колеса

r c = 0,5 Д н ,

где r c – свободный радиус колеса в м;

Д н – наружный диаметр колеса в м, который определяется экспериментально при отсутствии контакта колеса с дорогой и номинальном давлении воздуха в шине.

В практике этот радиус используется конструктором для определения габаритных размеров автомобиля, зазоров между колесами и кузовом автомобилем при его кинематике.

Статический радиус колеса – расстояние от опорной поверхности до оси вращения колеса на месте. Определяется экспериментально или рассчитывается по формуле

r cт = 0,5 d + l z H,

где r cт – статический радиус колеса в м;

d – посадочный диаметр обода колеса в м;

l z - коэффициент вертикальной деформации шины. Принимается для тороидных шин l z =0,85…0,87; для шин регулируемого давления l z =0,8…0,85;

Н – высота профиля шины в м.

Динамический радиус колеса r d – расстояние от опорной поверхности до оси вращения колеса во время движения. При движении колеса по твердой опорной поверхности с малой скоростью в ведомом режиме принимается

r cт » r d .

Радиус качения колеса r к – путь, проходимый центром колеса, при его повороте на один радиан. Определяется по формуле

r к = ,

где S – путь, проходимый колесом за один оборот в м.;

2p - число радиан в одном обороте.

При качении колеса на него могут действовать крутящий М кр и тормозной М т моменты. При этом крутящий момент уменьшает радиус качения, а тормозной – увеличивает.

При движении колеса юзом, когда имеется путь и отсутствует вращение колеса, радиус качения стремится к бесконечности. Если происходит буксование на месте, тогда радиус качения равен нулю. Следовательно, радиус качения колеса изменяется от нуля до бесконечности.

Экспериментальная зависимость радиуса качения от приложенных моментов представлена на рис.3.1. На графике выделим пять характерных точек: 1,2,3,4,5.

Точка 1 – соответствует движению колеса юзом при приложении тормозного момента. Радиус качения в этой точке стремится к бесконечности. Точка 5- соответствует буксованию колеса на месте при приложении крутящего момента. Радиус качения в этой точке приближается к нулю.

Участок 2-3-4 – условно ли-нейный, а точка 3 соответствует радиусу r ко при качении колеса в ведомом режиме.

Рис.3.1.Зависимость r к = f (M).

Радиус качения колеса на этом линейном участке определяется по формуле

r к = r ко ± l т M,

где l т – коэффициент тангенциальной эластичности шины;

M - приложенный к колесу момент в Н.м.

Знак « + » брать, если к колесу приложен тормозной момент, а знак « - » - если крутящий.

На участках 1-2 и 4-5 не существует зависимостей для определения радиуса качения колеса.

Для удобства изложения материала в дальнейшем введем понятие «радиус колеса» r к , имея ввиду следующее: если определяются параметры кинематики автомобиля (путь, скорость, ускорение), то под радиусом колеса понимается радиус качения колеса; если определяются параметры динамики (сила, момент), то под этим радиусом понимается динамический радиус колеса r d . С учетом принятого в дальнейшем динамический радиус и радиус качения будет обозначаться r к ,

Для подбора шин и определения по их размерам радиуса качения колеса необходимо знать распределение нагрузки по мостам.

У легковых автомобилей распределение нагрузки от полной массы по мостам зависит в основном от компоновки. При классической компоновке на задний мост приходится 52…55% нагрузки от полной массы, для переднеприводных автомобилей 48%.

Радиус качения колеса rк выбирается в зависимости от нагрузки на одно колесо. Наибольшая нагрузка на колесо определяется положением центра масс автомобиля, которое устанавливается по предварительному эскизу или прототипу автомобиля.

G2=Ga*48%=14000*48%=6720Н

G1=Ga*52%=14000*52%=7280Н

Следовательно, нагрузку на каждое колесо передней и задней оси автомобиля соответственно можно определить по формулам:

P1=7280/2=3360 Н

P2=6720/2=3640 Н

Расстояние от передней оси до центра масс найдем по формуле:

L-база автомобиля, мм.

a= (6720*2,46) /14000=1,18м.

Расстояние от центра масс до задней оси:

в=2,46-1,18=1,27м

Тип шин (по таблице ГОСТов) - 165-13/6,45-13. По этим размерам можно определить радиус колеса, находящегося в свободном состоянии:

Где b-ширина профиля шины (165 мм)

d - диаметр обода шины (13 дюймов)

1дюйм=25,4мм

rc=13*25,4/2+165=330 мм

Радиус качения колеса rk определяется с учетом деформации, зависящей от нагрузки:

rk=0.5*d+ (1-k) *b (9)

где k - коэффициент радиальной деформации. Для стандартных и широкопрофильных шин k принимают 0,3

rk=0,5*330+ (1-0,3) *165=280мм=0,28м

Другие публикации:

Эксплуатационные экономические показатели работы порта
Рассчитаем и сравним показатели экономической эффективности вариантов схем механизации. Расчет произведем в табличной форме. Таблица 4.1 Расчет технико-экономических показателей, сравнение экономической эффективности схем механизации Показатель Вариант Отклонение Базовый Предлагаемый...

Транспортно-перегрузочная характеристика груза
На выбор способов перевозки и перегрузки оказывают влияние физико-химические и механические свойства грузов. Состав этих характеристик зависит от категории грузов (штучные, навалочные, лесные и др.). Навалочными называются грузы, которые транспортируются в транспортных средствах навалом. К навалочн...

Анализ эксплуатационных расходов и себестоимости перевозок
Расходы по перевозкам (Е) складываются под влиянием большого числа факторов. Причем одни факторы являются для отделения внешними, не зависящими от его работников, а другие, наоборот, зависят от качества работы коллектива, его усилий, направленных на повышение эффективности производства. Поэтому пра...