Ридберговские атомы. Конденсат Бозе - Эйнштейна

Ридберговские атомы. Конденсат Бозе - Эйнштейна

В Бозе-Эйнштейновском конденсате атомов стронция-84 могут возникать поляроны, представляющие собой ридберговские атомы, окруженные облаком упругих деформаций. Этот эффект увидели на практике и обосновали теоретически физики из Австрии и США. Статья опубликована в Physical Review Letters , препринт работы выложен на сайте arXiv.org.

Когда медленный электрон движется сквозь диэлектрик, он взаимодействует с его атомами и деформирует (поляризует) решетку. При перемещении электрона область деформаций смещается вместе с ним, и получается, будто электрон постоянно окружен облаком фононов . Более того, оказывается, что получившаяся обладает квадратичным спектром, то есть имеет некоторую эффективную массу (она немного больше массы «обычного» электрона-квазичастицы). Такая квазичастица называется поляроном . Не следует путать эту квазичастицу с поляритоном , возникающим при взаимодействии фотонов с элементарными возбуждениями среды (фононами, экситонами, плазмонами, магнонами и так далее).

Поляроны возникают не только в диэлектриках, но и в металлах, полупроводниках, ионных кристаллах и даже ферромагнетиках (смотри «мешок Нагаоки»), а в качестве «ядра» полярона может выступать не только электрон, но и другая заряженная неоднородность. Разумеется, свойства поляронов в разных материалах отличаются. Поляроны играют важную роль для объяснения проводимости ионных кристаллов и полярных полупроводников, спинового переноса в органических полупроводниках и оптического поглощения двумерных материалов.

В этой статье группа ученых под руководством Томаса Киллиана (Thomas Killian) сообщает о спектроскопических наблюдениях ридберговских поляронов в атомов стронция-84. В таких поляронах в качестве «ядра» выступает ридберговский атом - атом, в котором электрон очень сильно возбужден, то есть находится на уровне с очень большим значением главного квантового числа . В результате внутреннюю часть атома можно рассматривать как эффективную частицу с единичным положительным зарядом и большой массой, а в целом атом сильно напоминает обычный атом водорода.

Для начала исследователи приготовили бозе-конденсат, удерживая облако атомы стронция с помощью лазерных лучей (оптически-дипольная ловушка) и охлаждая его до температуры порядка 150 нанокельвинов. Среднее расстояние между соседними атомами в таком конденсате составляло примерно 80 нанометров. Затем ученые ионизировали атомы с помощью коротких (порядка микросекунды) вспышек лазеров с длиной волны 689 и 319 нанометров. В результате один из электронов внешней оболочки атома стронция переходил с s -орбитали на p -орбиталь, а потом перескакивал на s -орбиталь более высокой n -ой оболочки. Наконец, ученые измерили линейный отклик бозе-конденсата, то есть нашли, как амплитуды перехода между основным (невозбужденным) и возбужденным состояниями зависит от частоты возбуждения. В результате исследователи получили, что на низких частотах отклик растет согласно с распределением Гаусса (заштрихованные области на рисунке), а при достижении максимума спектр становится практически постоянным.


Зависимость линейного отклика от частоты возбуждения для различных значений главного квантового числа n ридберговоского атома, образующего полярон. Линиями отмечена теоретически рассчитанная зависимость, точками - экспериментальные данные

F. Camargo et al. / Phys. Rev. Lett.

Также ученые численно исследовали конденсат атомов стронция, чтобы объяснить возникновение поляронов. Действительно, выписывая и диагонализуя гамильтониан ридберговского атома, помещенного в бозе-конденсат, можно получить спектр поляронов (гамильтониан Фрёлиха , Fröhlich Hamiltonian). Для этого физики использовали разработанный ранее подход, основанный на вычислении функциональных детерминантов (functional determinant approach, FDA). Вычисленная теоретически зависимость хорошо объясняла экспериментальные данные, причем ее гауссовая часть отвечала образованию поляронов.

Вообще говоря, обычно физики работают с бозе-конденсатом атомов рубидия-87, и раньше авторы статьи уже пытались разглядеть в нем поляроны. Однако из-за особенностей электронных оболочек ( -wave shape resonance) спектр поглощения ридберговских атомов рубидия сильно зависит от номера уровня n , на котором находится электрон, и это мешает распознать в экспериментальных данных резонансы, отвечающие поляронам. В конденсате атомов стронция-84 такие проблемы не возникают.

В конце прошлого года швейцарские физики из Института квантовой электроники в бозе-конденсате атомов рубидия-87 хиггсовскую и голдстоуновскую моду колебаний, хотя обычно одна из этих мод бывает подавлена. Для этого они удерживали конденсат с помощью лазерных пучков и следили за возникающими в нем возбуждениями с помощью брэгговской спктроскопии.

Дмитрий Трунин

Физики Михаил Лукин и Владан Вулетич провели эксперимент, в котором фотоны взаимодействуют, подобно частицам в молекуле. До сих пор это считалось возможным только в теории.

Михаилу Лукину (Гарвард) и Владану Вулетичу (Массачусетский технологический институт) удалось заставить фотоны связываться и образовывать некое подобие молекулы. Экспериментально получено новое состояние материи, возможность существования которого до этого рассматривалась лишь теоретически. Их работа описана в журнале Nature от 25 сентября.

Это открытие, утверждает Лукин, идёт вразрез с накопленными за десятки лет представлениями о природе света. Фотоны традиционно описываются как частицы, не имеющие массы и не взаимодействующие друг с другом: если пустить два лазерных луча строго навстречу, они просто пройдут насквозь один через другой.

«Большинство известных нам свойств света обусловлены тем, что фотоны не имеют массы и не взаимодействуют друг с другом, - говорит Лукин. - Но нам удалось создать среду особого типа, в которой фотоны взаимодействуют настолько сильно, что начинают вести себя как если бы имели массу, и связываются друг с другом, образуя молекулы. Этот тип связанного состояния фотонов уже довольно давно обсуждается теоретически, но до сих пор его не удавалось наблюдать».

По словам Лукина, аналогия со световым мечом, который так любят авторы космического фэнтэзи, не будет большой натяжкой. Когда такие фотоны взаимодействуют, они отталкиваются друг от друга и отклоняются в сторону. То, что происходит в этот момент с молекулами, похоже на сражение световых мечей в кино.

Чтобы заставить фотоны, в норме не имеющие массы, связываться друг с другом, Лукин и коллеги (Офер Фистерберг и Алексей Горшков из Гарварда и Тибо Пейронель и Ци Лян из Массачусетса) создали для них экстремальные условия. Исследователи закачали в вакуумную камеру атомы рубидия, затем, с помощью лазера, охладили атомное облако почти до абсолютного нуля. С помощью сверхслабых лазерных импульсов они выстреливали в это облако единичными фотонами.
«Когда фотон попадает в облако холодных атомов, - рассказывает Лукин, - его энергия приводит атомы, которые «встретились ему на пути», в состояние возбуждения, что резко замедляет движение фотона. По мере того, как он движется сквозь облако, его энергия переходит от атома к атому и в конце концов выходит из облака вместе с фотоном. Когда фотон выходит из этой среды, его идентичность сохраняется. Это тот же эффект, который мы наблюдаем при преломлении света в стакане воды. Свет входит в воду, передаёт часть своей энергии среде и существует внутри неё одновременно как свет и вещество. Но выйдя из воды, он по-прежнему остается светом. В проведенном эксперименте с фотонами происходит примерно то же, только в более высокой степени: свет существенно замедляется и передаёт среде больше энергии, чем при рефракции».

Выстрелив в облако двумя фотонами, Лукин и коллеги обнаружили, что выходят они вместе, как единая молекула.
«Этот эффект называется блокадой Ридберга, - объясняет Лукин. - Он заключается в том, что когда атом находится в возбуждённом состоянии, ближние к нему атомы не могут быть возбуждены до той же степени. Практически это значит, что когда в атомное облако входят два фотона, первый возбуждает какой-либо атом, но должен продвинуться вперёд прежде, чем второй фотон приведёт в возбуждение соседний. В результате по мере того, как энергия двух фотонов переходит от атома к атому, они как бы тянут и толкают друг друга сквозь атомное облако. Фотонное взаимодействие обусловлено атомным взаимодействием. Оно заставляет два фотона вести себя подобно молекуле, и среду они с высокой вероятностью покинут вместе, как один фотон».

Этот необычный эффект имеет ряд практических применений.

«Мы делаем это для собственного удовольствия и чтобы расширить границы знания, - говорит Лукин. - Но наши результаты хорошо вписываются в большую картину, поскольку фотоны остаются лучшим на сегодняшний день средством для переноса квантовой информации. До сих пор основным препятствием для использования их в этом качестве было отсутствие взаимодействия между ними».

Чтобы создать квантовый компьютер, нужно создать систему, которая могла бы сохранять квантовую информацию и обрабатывать её, используя операторы квантовой логики. Основная трудность здесь в том, что квантовая логика требует взаимодействия между одиночными квантами, тогда систему можно будет «включать» для обработки информации.

«Нам удалось показать, что это возможно, - говорит Лукин. - Но прежде, чем мы получим работающий квантовый переключатель или создадим фотонную логику, нам ещё предстоит повысить эффективность процесса; сейчас это скорее образец, демонстрирующий принципиальную идею. Но и он представляет собой большой шаг: физические принципы, которые утверждает эта работа, очень важны».

Система, продемонстрированная исследователями, может пригодиться даже в классическом компьютинге, где потребности в разнообразных носителях постоянно растут. Некоторые компании, в том числе IBM, работают над системами на основе оптических роутеров, способных преобразовывать световые сигналы в электрические, но у этих систем тоже есть ограничения.

Лукин также предположил, что разработанная его группой система когда-нибудь сможет использоваться для создания из света трёхмерных кристаллоподобных структур.
«Мы пока не знаем, как их можно применить, - сказал он, - но это новое состояние материи; мы надеемся, что прикладной смысл появится по мере того, как мы будем дальше исследовать свойства фотонных молекул.

По материалам :

Ofer Firstenberg, Thibault Peyronel, Qi-Yu Liang, Alexey V. Gorshkov, Mikhail D. Lukin, Vladan Vuletić.

26 сентября 2013 в 01:41

Взгляд на свет в новом свете: Учёные создали невиданную форму материи. (перевод статьи)

  • Tutorial

Учёные Гарварда и Массачусетского технологического института (MIT - МТИ) меняют общепринятую точку зрения о свете и для этого им не пришлось лететь в другую далёкую-предалёкую галактику.
 Работая с коллегами из центра Ультрахолодных атомов Гарварда-Массачусетcа, группа профессора физики Гарварда Михаила Лукина и профессора физики МТИ Владана Вулетича смогла заговорить фотоны, чтобы они связались вместе в форму молекулы - состояние материи прежде бывшее только в чистой теории. Работа описана в статье Nature 25 сентября.

Со слов Лукина открытие вскрывает десятилетнее общепринятое противоречие, лежащее в основе природы света. «Фотоны уже давно считались безмассовыми частицами, которые не взаимодействуют друг с другом - ведь сияние двух лучей лазера, просто проходит сквозь друг друга» - говорит он.
«Фотонные молекулы», тем не менее, ведут себя не вполне как традиционные лазеры, а в большей степени как на страницах научной фантастики - световые мечи.

 «Большая часть известных свойств света происходит из того, что фотоны не имеют массы и не взаимодействуют друг с другом, То что мы сделали - это создали особый тип среды, в которой фотоны стали взаимодействовать друг с другом так сильно, что начинают действовать так, будто у них есть масса и связываются вместе в молекулы.
Этот тип состояния фотонной связи теоретически обсуждался довольно-таки давно, но до сих пор его не наблюдали.
Не стоит проводить прямую аналогию со световыми мечами,» - добавляет Лукин. «Когда эти фотоны взаимодействуют друг с другом, они отталкиваются и отражают друг друга. Физика того, что происходит в этих молекулах похожа на то, что мы видим в кино.»
 Но использовать «Силу» Лукину и его коллегам, включая Офера Фистерберга, Алексея Горшкова, Тибо Пейронэль и Чи-Ю Лянь, не представилось возможности, пришлось пользоваться набором экстремальных условий.
Исследователи начали с накачки атомов рубидия в вакуумной камере, затем лазерами охладили облако атомов до минимума, чуть выше абсолютного нуля, используя экстремально слабые импульсы лазера, они выстрелили одним фотоном в облако атомов.
 «После выхода фотона из среды, он сохраняет свою идентичность,» - Лукин (Lukin). «Это похоже на эффект преломления света, который мы видим при прохождении света через стакан с водой. Свет проникает в воду и расплёскивает часть своей энергии в среде, но внутри неё он существует как свет и материя соединённые вместе, а когда выходит - продолжает быть светом. Тут примерно происходит такой же процесс, только ещё круче - свет сильно замедляется и выделяет гораздо больше энергии, чем при преломлении.»

Когда Лукин и его коллеги выпустили два фотона в облако их удивило то, что фотоны на выходе объединились в одну молекулу.
Что заставило их сформировать никогда-невиданную молекулу?

 «Этот эффект называется блокада Райдберга,» - сказал Лукин, - " который описывает состояние атомов, когда атом возбуждён - соседние атомы не могут быть возбуждены в той же степени. На практике эффект обозначает, что как только два фотона входят в атомарное облако, первый возбуждает атом, но должен оказаться впереди раньше, чем второй фотон сможет возбудить соседние атомы."
В результате, с его слов, получается, что два фотона как бы тянут и толкают друг друга через облако, в то время как их энергия перекидывается от одного атома к другому.
«Это фотонное взаимодействие опосредованное атомным взаимодействием,» - говорит Лукин. «Это заставляет фотоны вести себя как молекулы и когда они выходят из среды, наиболее вероятно они сделают это вместе, а не как единичные фотоны.»
Хотя эффект и необычен для него возможно практическое применение.
 «Мы это делали for fun (для развлечения), ну и потому что мы раздвигаем границы науки,» - говорит Лукин.
«Но это включается в более широкую картину того, что мы делаем, потому что фотоны остаются наилучшим возможным средством для передачи квантовой информации. Главным недостатком было то, что фотоны не взаимодействуют друг с другом.
Чтобы построить квантовый компьютер,» - объясняет он, - " исследователям нужно построить систему, которая сможет хранить квантовую информацию, и обрабатывать её с помощью операций квантовой логики.
Но проблема была в том, что квантовая логика требует взаимодействия между отдельными квантами, чтобы эти квантовые системы могли переключаться для выполнения обработки информации.
То, что мы продемонстрировали в этом процессе, позволит нам пойти дальше" - сказал профессор Гарварда Михаил Лукин.

 «Прежде чем мы дойдём до практического применения квантового переключателя или преобразователя фотонной логики, мы должны усовершенствовать производительность, так что это всё ещё находится на уровне доказательства концепции, но это важный шаг.
Установленные нами здесь физические принципы являются важными. Система может быть полезна также и в классических вычислениях, для снижения потерь мощностей, которые сейчас испытывают производители чипов.
 Некоторые компании, включая IBM, разрабатывали системы, основанные на оптических маршрутизаторах, которые преобразовывают световые сигналы в электрические, но у них были определённые сложности.»
Лукин также предположил, что система может в один прекрасный день быть использована даже для создания сложной трёхмерной структуры - такой как кристалл - полностью из света.
«Для чего это будет полезно, мы ещё не знаем толком, но это новое состояние вещества, поэтому мы полны надежд, что применение для него может возникнуть в процессе продолжения нашего исследования свойств этих фотонных молекул», - сказал он.

Harvard University (2013, September 25). Seeing light in a new light: Scientists create never-before-seen form of matter. ScienceDaily. Retrieved September 25, 2013, from

Группа ученых из исследовательского Центра изучения ультрахолодных атомов Гарварда-Массачуссетса (Harvard-MIT Center for Ultracold Atoms), возглавляемая профессорами Михаилом Лукиным (Mikhail Lukin) и Владэном Вулетиком (Vladan Vuletic), впервые в истории науки заставили фотоны света взаимодействовать между собой и связаться, образуя нечто молекул вещества, формирующих материю, которая до этого существовала только в теории. Данное открытие было сделано вопреки всем знаниям людей о природе света, которые накапливались в течение более чем сотни лет, и оно опровергает утверждение о том, что фотоны являются нейтральными невесомыми частицами, которые не могут взаимодействовать друг с другом.

"Поведение образованных фотонных молекул отличается от поведения света естественного происхождения и искусственного происхождения, от лучей лазерного света из которого они были сделаны" - рассказывает профессор Лукин, - "Больше всего их поведение напоминает нечто, хорошо известное нам по научной фантастике - световой меч рыцарей-джедаев из "Звездных войн"".

"Большинство свойств света, которые известны нам в настоящее время, указывают на то, что фотоны невесомы и не взаимодействуют между собой, два луча лазерного света свободно проходят друг через друга, не претерпевая никаких изменений. Но нам удалось создать специальную среду с уникальными условиями, в которой фотоны начинают взаимодействовать между собой настолько сильно, будто бы у них имеется значительная масса. Благодаря этому они объединяются в нечто, что мы назвали фотонными молекулами. Такой вид взаимодействия фотонов существовал в теории уже достаточно давно, но до нас его никто не наблюдал практически" - рассказывает Лукин, - "Конечно, не очень корректно сравнивать новую форму фотонной материи со световыми мечами. Но когда фотонные молекулы взаимодействуют между собой, они или притягиваются или отталкиваются, что проявляется на физическом плане в виде эффектов, которые мы могли видеть в поединках на световых мечах".

Для того, чтобы заставить невесомые фотоны света взаимодействовать друг с другом, ученым не пришлось обращаться к помощи Силы джедаев. Вместо этого они сделали установку, в которой был создан целый ряд уникальных условий и характеристик среды. Все началось с "накачки" вакуумной камеры газом из атомов рубидия, которые затем с помощью света лазера были охлаждены до температуры в несколько градусов выше абсолютного нуля. Затем ученые начали посылать слабые импульсы, практически единичные фотоны света другого лазера в самую гущу облака охлажденных атомов рубидия.

Фотоны света, входя в облако атомов, возбуждают эти атомы, отдавая им часть своей энергии и резко замедляя свое движение. Эта энергия передается от атома к атому со скоростью движения изначального фотона и, в конечном счете, эта энергия покидает пределы облака атомов одновременно с изначальным фотоном.

"Когда фотон покидает облако, все его характеристики остаются такими же, как и до входа в него" - рассказывает профессор Лукин, - "Подобный эффект мы наблюдаем, когда свет преломляется внутри сосуда с водой. Свет входит в воду, отдавая ей часть своей энергии, и в этот момент существует некая субстанция, состоящая из трех компонентов, света, энергии и материи. Но когда свет покидает пределы воды, он возвращается к своему изначальному состоянию. В случае со светом и облаком атомов рубидия все происходит точно также, но эффект проявляется значительно сильней, свет замедляется до более низкой скорости, отдавая большее количество энергии материи, чем это происходит в случае со светом и водой".

Когда ученые стали посылать в недра облака атомов рубидия не по одному фотону, а по несколько, они обнаружили, что эти фотоны покидали пределы облака, сгруппировавшись вместе в единое образование, в фотонную молекулу. В данном случае это происходит за счет влияния эффекта блокады Ридберга (Rydberg blockade). Этот эффект определяет, что когда один атом облака газа возбуждается за счет поступления энергии извне до какого-нибудь энергетического уровня, соседние атомы не могут быть возбуждены до такого же уровня. А на практике это означает, что когда два или больше фотонов синхронно входят в облако атомов, один из фотонов своей энергией возбуждает первый попавшийся атом, замедляя при этом свое движение. За счет блокады Ридберга второй фотон не может отдать энергию даже другим атомам и продолжает двигаться с прежней скоростью, обгоняя первый фотон. Когда второй фотон достигает зоны, свободной от влияния блокады Ридберга, он также отдает попавшемуся атому часть своей энергии и замедляет свое движение. В результате получается почти синхронное движение двух медленных фотонов и двух волн энергии, которые постоянно тянут и толкают друг друга.

"Это взаимодействие между фотонами определяется взаимодействием атомов в облаке" - рассказывает Лукин, - "Оно заставляет фотоны вести себя подобно единой молекуле, и когда фотоны покидают пределы облака, они в большинстве случаев продолжают вести себя как фотонная молекула".

Произведенный учеными эффект, основанный на взаимодействии фотонов света, безусловно, интересен и необычен. Но у него имеется несколько видов практического применения. "Многим может показаться, что мы просто играемся, одновременно раздвигая границы людских познаний" - объясняет Лукин, - "Это совсем не так, фотоны света остаются самым лучшим средством передачи квантовой информации. И одним из препятствий к разработке технологий квантовых вычислений и квантовых коммуникаций было то, что мы не могли заставить фотоны взаимодействовать друг с другом. Теперь нам удалось решить эту проблему".

В дальнейшем ученые собираются применить разработанную ими технологию для создания сложных пространственных структур, подобных кристаллам, состоящих из фотонных молекул, т.е. из чистого света. "Это позволит нам реализовать полностью нематериальную квантово-оптическую систему, содержащую фундаментальные логические элементы, которые можно использовать для обработки и хранения квантовой информации" - рассказывает Лукин, - "Конечно, для реализации этого нам кое-что придется переделать и усовершенствовать, а то, чего мы достигли сейчас, является лишь доказательством работоспособности новых физических принципов".

"Чем наше открытие может быть полезно, мы пока еще не знаем, это станет известно только в будущем. Но это - новый вид материи, точнее ее новая форма, и мы надеемся, что дальнейшие изучения свойств фотонных молекул и фотонных кристаллов укажут нам на области их практического применения".

Текущая версия страницы пока не проверялась

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от, проверенной 9 ноября 2018; проверки требует.

Ри́дберговские а́томы (названы в честь Й. Р. Ридберга) - водородоподобные атомы и атомы щелочных металлов, у которых внешний электрон находится в высоковозбуждённом состоянии (вплоть до уровней n порядка 1000). Для перевода атома из основного в возбуждённое состояние его облучают резонансным лазерным светом или инициируют радиочастотный разряд. Размер ридберговского атома может превышать размер находящегося в основном состоянии того же самого атома почти в 10 6 раз для n = 1000 (см. таблицу ниже).

Электрон, вращающийся на орбите радиуса r вокруг ядра, по второму закону Ньютона испытывает силу

Из этих двух уравнений получим выражение для орбитального радиуса электрона, находящегося в состоянии n :

где Ry = 13,6 эВ есть постоянная Ридберга , а δ - дефект заряда ядра, который при больших n несущественен. Разница энергий между n -м и (n  + 1)-м уровнями энергии равна

Характерный размер атома r n и типичный квазиклассический период обращения электрона равны

Длина волны излучения атома водорода при переходе с n ′ = 91 на n = 90 равна 3,4 см .

При возбуждении атомов из основного состояния в ридберговское происходит интересное явление, получившие название «дипольная блокада».

Когерентное управление дипольной блокадой ридберговских атомов лазерным светом делает их перспективным кандидатом для практической реализации квантового компьютера . По сообщениям научной печати, до 2009 года важный для вычислений элемент квантового компьютера двух-кубитный вентиль экспериментально не был реализован. Однако, имеются сообщения о наблюдении коллективного возбуждения и динамического взаимодействия между двумя атомами и в мезоскопических образцах.

Сильно взаимодействующие ридберговские атомы характеризуются квантовым критическим поведением, что обеспечивает фундаментальный научный интерес к ним независимо от приложений.

Исследования, связанные с ридберговскими состояниями атомов, можно условно разбить на две группы: изучение самих атомов и использование их свойств для прочих целей.

В 2009 году исследователями из удалось получить Ридберговскую молекулу (англ.) .

Первые экспериментальные данные по ридберговским атомам в радиоастрономии были получены в 1964 году Р. С. Сороченко и др. (ФИАН) на 22-метровом зеркальном радиотелескопе, созданном для исследования излучения космических объектов в сантиметровом диапазоне частот. При ориентации телескопа на туманность Омега в спектре радиоизлучения, идущего от этой туманности, была обнаружена линия излучения на длине волны λ ≃ 3,4 см . Эта длина волны соответствует переходу между ридберговскими состояниями n ′ = 91 и n = 90 в спектре атома водорода