Простые чм и ам приемники для радиостанций. Простой детекторный приёмник

Простые чм и ам приемники для радиостанций. Простой детекторный приёмник

Лямбда зонд (также называется кислородным контроллером, датчиком O2, ДК) является неотъемлемой частью выхлопной системы автотранспортных средств, отвечающих экологическим стандартам EURO-4 и выше. Это миниатюрное устройство (обычно устанавливается 2 лямбда зонда и более) контролирует содержание O2 в выхлопных смесях автотранспортного средства, благодаря чему значительно снижается выброс ядовитых отходов в атмосферу.

В случае некорректной работы ДК или если произошло отключение лямбда зонда, функционирование силового агрегата может быть нарушено, из-за чего мотор перейдет в аварийный режим (на панели загорится Check Engine). Чтобы такого не случилось, систему автомобиля можно перехитрить, установив обманку.

Механическая обманка лямбда зонда («ввертыш»)

«Ввертыш» - это втулка, изготовленная из бронзы или теплоустойчивой стали. Внутренняя часть такой «проставки» и ее полости заполняются керамической крошкой со специальным каталитическим покрытием. Благодаря этому отработанные газы дожигаются быстрее, что, в свою очередь, приводит к разным показателям импульсов 1 и 2 ДК.

Важно! Любая обманка устанавливается только на исправный лямбда зонд.

Самодельная обманка лямбда зонда, схема которой представлена ниже, проста в изготовлении. Для этого вам потребуется подготовить:

  • заготовку;
  • отвертку;
  • набор ключей.

Делается обманка на обрабатывающем токарном станке. Если такового нет, то можно обратиться к специалисту, предоставив ему чертеж.

Полученная деталь совместима с большинством выхлопных систем как отечественных, так и зарубежных автомобилей.

Установка обманки лямбда зонда производится следующим образом:

  • Поднимите авто на эстакаду.
  • Отключите минусовую клемму на АКБ.
  • Выкрутите первый (верхний) зонд (если их два, то снимите тот, который расположен между катализатором и выпускным коллектором).
  • Вкрутите лямбда зонд в «проставку».
  • Установите «усовершенствованный» датчик на место.
  • Подключите клемму к аккумулятору.

Полезно! Обычно механическая обманка второго лямбда зонда не выполняется, так как этот ДК защищен катализатором и контролирует только его состояние. Самым чутким является именно первый датчик, который установлен ближе всего к коллектору.

После этого системная ошибка «Check Engine» должна исчезнуть. Если этот способ не сработал, можно воспользоваться более дорогостоящей обманкой.

Электронная обманка

Еще один способ устранения проблем с ДК - это электронная обманка лямбда зонда, схема которой представлена чуть ниже. Так как датчик кислорода передает сигнал контроллеру, то схема-обманка, подключенная к проводке от датчика к разъему, позволит «загрубить» систему. Благодаря этому, в ситуации, если лямбда зонд будет неисправен, силовой агрегат будет продолжать работать корректно.

Полезно! Места установки такой обманки могут отличаться в зависимости от модели АТС. Например, она может быть монтирована в центральный тоннель между сиденьями, в торпеде или моторном отсеке.

Схема-обманка - это однокристальный микропроцессор, который анализирует процессы в катализаторе, получает данные от первого ДК, обрабатывает их, преобразует до показателей второго датчика и выдает на процессор автомобиля соответствующий сигнал.

Чтобы установить обманку этого типа, вам потребуется схема подключения лямбда зонда, которая выглядит следующим образом.

Как видите, бывает разная распиновка лямбда зонда (4 провода, три и два). Цвета проводов могут также отличаться, чаще всего встречаются изделия с 4 пинами (2 черных, белый и синий).

Для изготовления обманного устройства, вам потребуется:

  • паяльник с мелким жалом и припой;
  • канифоль;
  • неполярный конденсатор емкостью 1 мкФ Y5V, +/- 20%;
  • резистор (сопротивление) на 1 мОм, С1-4 имп, 0,25 Вт;
  • нож и изоляционная лента.

Полезно! Перед установкой, схему лучше всего поместить в пластиковый корпус и залить ее «эпоксидкой».

  • Отключите минусовую клемму АКБ.
  • «Препарируйте» провод, который идет от самого ДК к разъему.
  • Разрежьте синий провод и подсоедините его обратно через резистор.
  • Впаяйте неполярный конденсатор меду белым и синим проводами.
  • Заизолируйте соединения.

Ниже представлена схема обманки лямбда зонда своими руками для распиновки на 4 провода.

На заключительном этапе, должно получиться следующее.

Такие манипуляции не стоит выполнять, если у вас нет должного опыта. Сегодня в магазинах представлены готовые схемы-обманки, которые без труда сможет установить даже начинающий водитель.

Перепрошивка контроллера

Некоторые особо искушенные автовладельцы решаются на перепрошивку блока управления, благодаря чему блокируется обработка сигналов второго кислородного датчика. Однако необходимо учитывать, что любые изменения алгоритма работы системы могут привести к необратимым последствиям, так как вернуть заводские настройки будет практически невозможно и затратно. Поэтому выполнять такие манипуляции самостоятельно не рекомендуется. То же самое касается и готовых прошивок, которые продаются в интернете.

Полезно! При перепрошивке лямбда зонды удаляются.

Если вы все-таки хотите произвести перепрошивку системы, то обратитесь к грамотному специалисту, который сможет отключить получение данных ДК с помощью специализированного оборудования.

Также стоит учитывать, что практически любое вмешательство в работу систем, может привести к не самым приятным последствиям.

Какие последствия бывают после установки обманок

Нужно понимать, что любая обманка устанавливается на страх и риск автовладельца. Если монтаж был произведен неправильно, то вы можете столкнуться со следующими проблемами:

  • Из-за того, что бортовой компьютер не может регулировать впрыск жидкости, может произойти нарушение работы мотора.
  • Если схема неправильно спаяна, это может привести к повреждению электропроводки.
  • В процессе установки обманки вы можете повредить датчики кислорода, после чего даже не узнаете об их неисправности (так как у вас уже будет установлена обманка).
  • После таких вмешательств (не только при перепрошивке) может произойти сбой в бортовом компьютере.

Любая неточность приведет к плачевным последствиям, поэтому лучше установить более безопасный готовый эмулятор. В отличие от обманки, он не «обманывает» блок управления, а лишь обеспечивает его корректную работу, преобразуя сигнал ДК. Внутри эмулятора также установлен микропроцессор (как и в самодельной электронной обманке), который способен оценивать выхлопные газы и анализировать ситуацию.

В заключении

Многие автовладельцы устанавливают на свои машины самодельные обманки, чтобы сэкономить на покупке новых кислородных датчиков. Однако в такой погоне за выгодой, вы вполне можете столкнуться с большими денежными затратами, если кустарное устройство повлияет на работу «жизненно-важных» систем. Поэтому устанавливать обманки рекомендуется, только если вы смыслите в работах такого плана.

Большинство современных автомобилей имеют специальные электронные системы контроля. Они позволяют экономить расход топлива и обеспечивают оптимальную работу двигателя. Одним из неотъемлемых элементов системы выпуска газов является лямбда-зонд. При его поломке двигатель начинает работать в аварийном режиме. Можно ли устранить проблему своими руками?

Принцип действия лямбда-зонда и вопросы его ремонта

Датчик фиксирует количество кислорода в выхлопе автомобиля и передаёт его на пульт управления. В зависимости от показаний зонда компьютер регулирует уровень обогащения смеси, которая подаётся в камеру сгорания. В большинстве моделей устанавливают два зонда: один перед катализатором, а второй – за ним. В процессе эксплуатации кислородные датчики выходят из строя, производители рекомендуют проводить чистку устройств каждые 30 тысяч километров.

Многие автолюбители забывают о подобных рекомендациях и сталкиваются с проблемой уже после загорания аварийного знака на панели. Чаще всего лямбда-зонд не подлежит ремонту. Стоимость устройства немаленькая, и его замена всегда очень некстати. Народные умельцы нашли выход из этой неприятной ситуации. Они предлагают использовать специальную автомобильную обманку, которая позволит двигателю работать в нормальном состоянии и отключит аварийный сигнал Check Engine.

Совет: Не стоит полностью отключать или блокировать один из датчиков, это не решит проблему и приведёт лишь к увеличенному расходу топлива и нестабильной работе двигателя на холостом ходу.

Как правильно сделать обманку кислородного датчика

Сделать обманку для бортового компьютера своими руками можно тремя способами:

  • установить механическую втулку;
  • подключить несложную электронную схему;
  • сделать перепрошивку контроллера.

Каждый из методов вполне эффективно решает проблему вышедшего из строя датчика и возвращает работу двигателя в нормальное состояние.

Механический способ (с чертежами ввёртыша)

Чтобы обмануть контроллер, необходимо установить металлическую втулку между выхлопной трубой и лямбда-зондом. Для изготовления детали понадобится:

  • металлическая заготовка;
  • обрабатывающий станок;
  • отвёртка;
  • набор ключей.

Бронзовую механическую обманку можно сделать вручную или заказать её изготовление специалисту

Сделать деталь можно даже без специальных навыков работы, главное – иметь хороший токарный станок. В крайнем случае можно заказать её изготовление у знакомого специалиста.

Форма и размеры втулки показаны на чертеже.

Деталь должна точно соответсвовать схеме по форме и размерам

Чтобы установить механическую заглушку, необходимо сделать следующее:


После запуска двигателя сигнал Check Engine должен потухнуть. Таким образом, датчик немного отодвигается от потока выхлопных газов. Механическая обманка-ввёртыш подходит для большинства моделей автомобилей, главное, чтобы датчик вкручивался в корпус.

Как сделать и установить электронный (со схемой)

Так как контроллер принимает электронные сигналы, которые к нему поступают от лямбда-зонда, можно поставить специальную схему-обманку. Она подключается к проводам, которые идут от датчика к разъёму. Место установки у разных моделей отличается: это может быть центральный тоннель между сидениями, торпеда или моторный отсек. Чтобы сделать электронную схему, приготовьте следующие материалы:


Перед началом работы отключаем минусовую клемму. Все соединения необходимо хорошо изолировать. Лучшим вариантом будет поместить схему в пластиковую форму и залить все эпоксидным клеем.

Все соединения электронной обманки должны быть хорошо изолированы

В продаже можно встретить уже готовые электронные обманки. В них используется небольшой микропроцессор, который анализирует сигнал первого датчика, обрабатывает его и формирует нужные показатели для бортового компьютера. Такие устройства легко подключаются, но обойдутся дороже самодельной схемы.

Видео изготовления электронной обманки датчика и проверка её работы

Перепрошивка контроллера: стоит ли делать своими руками

Ещё одним вариантом обманки можно назвать перепрошивку самого бортового компьютера. Изменяя алгоритм работы устройства, вы блокируете обработку сигналов от второго лямбда-зонда. Опасность данного метода состоит в том, что при неправильных действиях будет сложно восстановить прежнюю работу компьютера. Оригинальную заводскую прошивку очень сложно достать, и стоимость её довольно большая. Поэтому доверить такую работу нужно только опытному специалисту, которого вы знаете лично.

Последствия установки обманок разного типа

При установке обманок стоит брать во внимание, что все работы выполняются на свой страх и риск. При неправильной установке подобных устройств могут возникнуть следующие неисправности:

  1. Нарушение работы двигателя из-за неправильной регулировки впрыска бортовым компьютером.
  2. Повреждение электропроводки и контроллера при неправильно спаянной схеме.
  3. Ошибки при работе бортового компьютера.
  4. Повреждение датчиков.

Работы с какой бы то ни было электроникой необходимо выполнять крайне аккуратно. Даже малейшая неточность может привести к поломке, поэтому нужно чётко следовать инструкциям.

Совет: Не стоит заказывать обманки в интернете на сомнительных сайтах. Большая часть из них плохо работает и не принесёт ожидаемого результата.

Обманки лямбда-зондов практикуют многие автолюбители. Такие устройства позволяют сэкономить на замене вышедших из строя датчиков. Важно правильно сделать обманку и установить её, чтобы не возникло негативных последний для бортового компьютера или двигателя.

Есть некая магия в простых схемах. Несомненно, к таковым можно отнести радиоприемные устройства прямого преобразования (ПП). Сам принцип, заложенный в них: уже не детектирование и усиление, как в приемниках прямого усиления, но и не супергетеродинный прием с его одной-двумя ПЧ. Здесь, в ПП, - преобразование и усиление без детектора высокочастотных электромагнитных волн … Не случайно талантливый Мастер-радиолюбитель, В.Т.Поляков, RA3AАE , выбрал главной темой своего творчества именно прямое преобразование. Его последователей не счесть!

Среди них, в первую очередь, хочется назвать С.Беленецкого, US5MSQ и С.Дылду, US5QBR. Ссылки на их публикации и комментарии на форумах имеются и у нас, хотя на СМР тема ППП представлена всего двумя публикациями:

В продолжение темы. ППП на К174ХА2.

Е.Курочкин. Еще один ППП.

Третий, сегодняшний, материал, - интересная работа английского автора. Интересна именно своей простотой схемы. К сожалению, по имеющейся у нас ссылке из интернета нам не удалось установить его имя.

Свободный перевод и редактирование текста статьи «80m DC receiver» и схем приемника проведено СМР. Ссылка на источник – в конце статьи.

Введение

Описываемый приемник (80m DC receiver ) дает возможность при минимальном количестве элементов получить хорошую чувствительность. Сокращение DC в его названии означает не " постоянный ток", а ПП ("Прямое Преобразование"). Это еще не супергетеродинный прием, но имеется ПЧ, находящаяся в звуковой части частотного спектра.

В общих чертах можно сказать: Fпч = Fсигн. - Fгетер.

Например: 2 кГц = 3580 кГц - 3578 кГц.

Получается, что разница между сигнальной частотой (с антенны) и частотой гетеродина (оба сигнала идут на смеситель) - это сигнал, который непосредственно (без любой дополнительной обработки) может быть услышан. Поскольку многочисленная сумма компонентов в спектре сигнала может быть проигнорирована, то не нужен и детектор.

Приемник с ПП может надежно работать, когда его гетеродин установлен на 2-3 кГц выше подавленной (несущей) частоты сигнала SSB. Даже незначительный уход с частоты настройки на несущую приведет к снижению усиления и, как результат, - громкости приема.

Другое преимущество приемника то, что, кроме приема CW (несущей при нажатии ключа) возможен прием и АМ, а также SSB сигналов (ОБП). Принимать сигналы SSB можно и классическим супергетеродином, но для этого требуется дополнительно вводить схему BFO (ОГ) и детектора сигналов. Приемнику прямого преобразования (ППП), чтобы преобразовывать сигналы SSB в нормальную речь, они не нужны. С его помощью можно легко получить чувствительность приблизительно 0.3 мВ (без дополнительного высокочастотного предусиления) с обычной стандартной схемой смесителя.

Также, приемник по сравнению с тем же самым супергетеродином очень чувствителен к частотам 50 и 100 Гц, что проявляется характерным «грохотом». Этот дефект можно устранить достаточным удалением трансформатора блока питания от основной схемы приемника и соответствующей защите. Например, для того чтобы справиться с фоном 50/100 Гц можно попытаться заменить диоды моста в выпрямителе; к каждому из 4-х диодов параллельно запаять конденсатор емкостью 10 n. Можно получить прекрасный результат, только надо не бояться экспериментировать время от времени…

Рис.1 Внешний вид приемника

Приемник принимает сигналы CW и SSB с частотами в пределах 80-метрового радиолюбительского КВ диапазона. Полоса приема составляет более 1300 кГц (3680-3810 кГц).

Описание и детали

Приемник разработан на базе микросхемы NE602. Она содержит, кроме прочего, двойной балансный смеситель, гетеродин и стабилизатор напряжения. Смеситель может работать с частотами вплоть до 500 мГц (!), а гетеродин способен генерировать сигналы с частотами до 200 мГц. NE602 легко может работать на низких частотах (около 3500 кГц). Динамический диапазон NE602 желательно бы улучшить. Последующая версия NE602AN имеет лучшие динамические характеристики. Также можно применить доступную микросхему NE612. Она совместима по цоколевке с NE602, и имеет, подобно NE602AN (которую трудно найти), более широкий динамический диапазон.

Рис.2 Схема 80m DC receiver

Подавление нежелательных частот и выделение разницы-суммы Fсигн. и ГПД происходит в балансном смесителе NЕ602. Только с его сбалансированного выхода (ножки 4 и 5) можно снять разностный НЧ сигнал и использовать для дальнейшего усиления

Входная часть ДПФ резонирует на частоте 3,7 мГц, подстраивается ферритовыми сердечниками катушек. Чем больше частота сигнала с антенны отличается от частоты на которой фильтр резонирует, тем более входной сигнал подавлен. Таким образом, мощные широковещательные сигналы будут достаточно заблокированы. Потенциометр во входной цепи приемника понижает амплитуду слишком больших входных сигналов на соответствующий уровень, с которым способен работать смеситель в NE602.

Для приема слабых станций предусмотрен отключаемый УВЧ, который дает усиление + 6 dB.

По даташиту NE602 в цепях питания 9В рекомендуется применять резисторы сопротивлением 1000 Ом, что и было сделано в этом приемнике.

Оба варикапа BA125 позволяют перестраивать VFO регулируемым напряжением. Оптимальным для получения этого управляющего напряжения является применение многооборотного потенциометра - чтобы слушать передачи SSB необходима точная настройка. Можно также (это более экономно) применить два обычных потенциометра (например, 10 кОм + 470 Ом последовательно). Настройка становится менее комфортабельной, но вполне приемлемой.

Подстроечный конденсатор использован, чтобы грубо устанавливать частоту. Настроиться на хорошее звучание можно с помощью многооборотного резистора.

Для усиления НЧ выбрана микросхема LM386. В зависимости от ее типа можно получить выходную мощность от 250 до 750 mW (с применением LM386N-1 около 325 mW, а с LM386-4 - до 750 mW).

Дополнительно в корпус приемника установлены:

трансформаторный блок питания с мостом, нагруженным на электролитические конденсаторы фильтра и интегральные стабилизаторы типа 7809 и 7806;

S-метр для наблюдения относительных изменений силы сигнала. Его вход подключается непосредственно к электролитическому конденсатору 100 мкФ (выход LF).

Рис.3 Схема S-метра

Указатель частоты (шкала) показан на рис.2. Он выполнен на базе стрелочного прибора по схеме вольтметра постоянного тока. Собственно шкалой приемника является шкала этого вольтметра, проградуированная в кГц.

Частоту VFO (ГПД) определяет катушка, намотанная на кольцевом сердечнике Amidon T50-2, содержит 30 витков медного провода ПЭЛ-2 диаметром 0.35 мм. При применении другого сердечника число витков подбирается экспериментально (применение программного пересчета рекомендуется).

В схеме применен ДПФ с полосой 1мГц в диапазоне 3-4 мГц. Здесь широкий выбор альтернативных вариантов.

Недостатком описанной здесь схемы ППП является небольшая выходная мощность при приеме слабых сигналов. В эксперименте для увеличения выходного уровня применялись две микросхемы LM386, соединенные последовательно. Результаты очень разноречивые. При самом высоком усилении возникала низкочастотная генерация, от которой не удавалось избавиться. Усиление LM386 регулируемое: если величина электролитического конденсатора между контактами 1 и 8 составляет10 мкФ, то усиление составляет 46 dB (в 200 раз). Без этого конденсатора усиление только 25 dB (в 20 раз).

Результаты

На 80-метровом диапазоне для наблюдения наиболее интересен участок 3.5-3.8 мГц из-за разнообразия и количества работающих радиостанций. Хотя для приема необходима хорошая антенна соответствующей длины. Днем в пределах диапазона возможен прием соседних станций, удаленных на несколько сот километров (так называемое приземное распространение радиоволн). В течение вечернего и ночного времени можно слушать практически всю Европу (часто с очень сильными сигналами). Ближе к утру слышны многочисленные сигналы из Североамериканского континента, а в 3-4 часа утра из так называемой серой зоны.

Соревнования позволят Вам более тщательно тестировать этот приемник. Избирательность и чувствительность - достаточно хороши, чтобы использовать его, как резервный приемник. Настройка - очень легкая и комфортабельная. Время от времени (вечером) мощные широковещательные станции могут вызвать некоторые помехи и «прерывать» прием.

Сокращения принятые в статье:

ППП – приемник прямого преобразования;

SSB (ОБП) – одна боковая полоса;

АМ – амплитудная модуляция;

CW – телеграфная манипуляция;

ДПФ – диапазонный полосовый фильтр;

VFO (ГПД) – генератор плавного диапазона;

BFO (ОГ) – опорный генератор.