Мутагенные факторы мутагенез и канцерогенез. Мутагенез и канцерогенез. Мутагенез внесение изменений в нуклеотидную последовательность ДНК (процесс возникновения мутаций). В основе мутагенеза лежат. Изучение значения понятия «генетический груз»

Мутагенные факторы мутагенез и канцерогенез. Мутагенез и канцерогенез. Мутагенез внесение изменений в нуклеотидную последовательность ДНК (процесс возникновения мутаций). В основе мутагенеза лежат. Изучение значения понятия «генетический груз»

А. Мутагенез - это внесение изменений в нуклеотидную последовательность ДНК (мутаций).

Виды мутагенеза:

1. Естественный, или спонтанный , мутагенез происходит вследствие воздействия на генетический материал живых организмов мутагенных факторов окружающей среды, таких как ультрафиолет, радиация, химические мутагены.

 Точечные мутации

a) Миссенс-мутация

b) Мутация сдвига рамки считывания

c) Нонсенс-мутация

d) Синонимическая сеймсенс-мутация.

 Хромосомные мутации

a) Инверсии

b) Реципрокные транслокации

c) Делеции

d) Дупликации и инсерционные транслокации

 Геномные мутации

a) Анеуплоидия

b) Полиплоидия

 Ядерные и цитоплазматические мутации

a) Ядерные мутации - геномные, хромосомные, точечные.

b) Цитоплазмотические мутации - связанные с мутациями неядерных генов находящихся в митохондриальной ДНК и ДНК пластид - хлоропластов.

2. Искусственный мутагенез широко используют для изучения белков и улучшения их свойств (направленной эволюции (англ.)).

 Ненаправленный мутагенез

Методом ненаправленного мутагенеза в последовательность ДНК вносятся изменения с определенной вероятностью. Мутагенными факторами (мутагенами) могут быть различные химические и физические воздействия - мутагенные вещества, ультрафиолет, радиация. После получения мутантных организмов производят выявление (скрининг) и отбор тех, которые удовлетворяют цели мутагенеза. Ненаправленный мутагенез более трудоемок и его проведение оправдано, если разработана эффективная система скрининга мутантов.

 Направленный мутагенез

В направленном (сайт-специфическом) мутагенезе изменения в ДНК вносятся в заранее известный сайт. Для этого синтезируют короткие одноцепочечные молекулы ДНК (праймеры), комплементарные целевой ДНК за исключением места мутации.

Канцерогенез (лат. cancerogenesis; cancer - рак + др.-греч. γένεσις - зарождение, развитие) - сложный патофизиологический процесс зарождения и развития опухоли. (син. онкогенез).

Изучение процесса канцерогенеза является ключевым моментом как для понимания природы опухолей, так и для поиска новых и эффективных методов лечения онкологических заболеваний. Канцерогенез - сложный многоэтапный процесс, ведущий к глубокой опухолевой реорганизации нормальных клеток организма. Из всех предложенных до ныне теорий канцерогенеза, мутационная теория заслуживает наибольшего внимания. Согласно этой теории, опухоли являются генетическими заболеваниями, патогенетическим субстратом которых является повреждение генетического материала клетки (точечные мутации, хромосомные аберрации и т. п.). Повреждение специфических участков ДНК приводит к нарушению механизмов контроля за пролиферацией и дифференцировкой клеток и в конце концов к возникновению опухоли

Б. Факторы мутагенеза:

Любые мутации могут возникнуть спонтанно или быть индуцированными.

Спонтанные мутации появляются под влиянием неизвестных природных

факторов и приводят к ошибкам при репликации ДНК.

Индуцированные мутации возникают под воздействием специальных

направленных факторов, повышающих мутационный процесс.

Мутагенным действием обладают факторы физической, химической и

биологической природы.

Среди физических мутагенов наиболее сильное мутантное действие

оказывает ионизирующая радиация - рентгеновские лучи, α-, β-, γ-лучи. Обладая большой проникающей способностью, при действии на организм они вызывают образование свободных радикалов ОН или НО2 из воды, находящейся в тканях. Эти радикалы обладают высокой реакционной способностью. Они могут расщеплять нуклеиновые кислоты и другие органические вещества.

Облучение вызывает как генные, так и хромосомные перестройки.

Ультрафиолетовое излучение характеризуется меньшей энергией, не

вызывающей ионизацию тканей. Действие УФ-излучения приводит к образованию тимидиновых димеров. Присутствие димеров в ДНК приводит к ошибкам при ее репликации.

Химические мутагены должны обладать следующими качествами:

Высокой проникающей способностью;

Свойством изменять коллоидное состояние хромосом;

Определенным действием на состояние хромосомы или гена. К химическим

веществам, вызывающим мутации, можно отнести органические и неорганические вещества, такие, как кислоты, щелочи, перекиси, соли металлов, формальдегид, пестициды, дефолианты, гербициды, колхицин и др.

Некоторые вещества способны усиливать мутационный эффект в сотни раз по

сравнению со спонтанным. Их называют супермутагенами. Эти супермутагены

вызывают широкий спектр точковых мутаций в концентрациях меньше тех, которые индуцируют хромосомные перестройки, видимые под микроскопом.

Супермутагенной активностью обладают нитрозосоединения (иприт,

диэтилнитрозамин, уретан и др.).

Некоторые лекарственные препараты также обладают мутагенным эффектом.

Например, цитостатики, производные этиленимина, нитрозомочевина. Они

повреждают ДНК в процессе репликации.

Химические мутагены могут вызывать нарушение мейоза, приводящее к

нерасхождению хромосом, разрыву хромосом, точковым мутациям. Некоторые

химические мутагены проходят через метаболическую систему организма самыми непредсказуемыми путями, превращаются в другие соединения. При этом они могут потерять свою мутагенную активность, или приобрести такие мутагенные свойства, которые отсутствовали у исходного соединения. Некоторые немутагенные химические вещества, включившись в обмен веществ, превращаются в мутагены.

Например, цитостатик - циклофосфамид - не мутаген, но в организме

млекопитающих превращается в высокомутагенное соединение.

Кроме мутагенов физической и химической природы, в окружающей среде

имеются биологические факторы мутагенеза.

Вирусы оспы, кори, ветряной оспы, эпидемического паротита, гепатита,

краснухи и др. способны вызывать разрывы хромосом. Вирусы могут усиливатьтемпы мутации клеток хозяина за счет подавления активности репарационныхсистем. Есть данные о возрастании числа хромосомных перестроек в клеткахчеловека после пандемий, вызванных вирулентными вирусами.

Возникновение мутаций приводит к различным патологиям. Для предотвращения негативных последствий, связанных с действием различных

мутагенных факторов среды, проводят мероприятия, снижающие вероятность

возникновения мутаций. С этой целью используют вещества, называемые

антимутагенными. В настоящее время выделено около 200 природных и

синтетических соединений, обладающих антимутагенной активностью. Это

аминокислоты (гистидин, метионин и др.), витамины (токоферол, каротин, ретинол,аскорбиновая кислота и др.), ферменты (оксидаза, каталаза и др.), интерферон и др.

Потребляемая пища содержит большое количество мутагенов и антимутагенов. Их соотношение зависит от способов обработки пищи, сроков ее

хранения и т.д. Правильное питание - один из путей предотвращения вредного воздействия мутагенных факторов среды.

В. мутации

Г. Процесс реконструкции поврежденной ДНК называют восстановлением или репарацией ДНК . Репарация наследственного материала заключается в ферментативномразрушении измененного участка молекулы ДНК с восстановлением на этом участкепоследовательности нуклеотидов, комплементарной фрагменту неповрежденноймолекулы ДНК.

В некоторых случаях фермент может разрушить фрагмент нормальной

молекулы ДНК, комплементарной измененному, в результате чего образуется

мутантная двойная спираль. Так как молекула ДНК - двойная спираль, то образование генной мутации происходит в два этапа. Сначала изменение затрагивает одну молекулу биоспирали. Это называется молекулярной гетерозиготностью или потенциальной мутацией. Если эти изменения затрагивают гомологичный локус комплементарной молекулы, то возникает истинная мутация и достигается состояние молекулярной гомозиготности. Мутация наследуется всеми потомками мутировавшей клетки. Переход в состояние молекулярной гомозиготности является результатом ошибок репарации. Репарация или коррекция молекулярных нарушений структуры ДНК приводит к устранению из наследственного материала клетки измененного участка.

Д. Три основных механизма репарации ДНК:

1. Фотореактивация. Действие видимого света на клетки, предварительно

обработанные УФ - излучением, приводит к снижению летального эффекта в несколько раз, т.е. к реактивации функций облученных клеток. Реактивирующее действие видимого света связано с расщеплением пиримидиновых димеров. Этот процесс обеспечивается светозависимым фотореактивирущим ферментом.

2. Темновая репарация.

В отличие от фотореактивации в данном случае репарация поврежденной ДНК

не нуждается в энергии видимого света. Этот процесс также происходит при участии ферментов. Тиминовые димеры вырезаются из цепи ДНК, в которой остаются бреши. На их места при участии фермента ДНК-полимеразы восстанавливается участок молекулы ДНК, в соответствии с информацией, имеющейся на комплементарной цепи. Фермент ДНК - лигаза принимает участие в восстановлении репарируемой молекулы ДНК.

3. Пострепликационная репарация функционирует в синтетическом периоде

митотического цикла. В премитотическом периоде участки молекулы ДНК, имеющие тимидиновые димеры -Т-Т-, не редуплицируются, на их месте образуются бреши. Недостающие фрагменты достраиваются в соответствии с комплементарностью цепи ДНК, что позволяет синтезировать нормальную молекулу ДНК и избежать наследования первичного мутационного изменения дочерними клетками.

Лекция 3. УД «Генетика человека с основами медицинской генетики» по теме «Мутации и мутагенные факторы»

Цель лекции:

Изучение закономерностей мутагенеза

Изучение причин мутаций

Изучение значения понятия «генетический груз»

Изучение классификации мутагенов

Ознакомление с терминологией генетики

План лекции:

Мутагенез.Понятие о мутагенах. Классификация мутагенов.Виды мутаций. Классификация мутаций.

Изменчивость - свойство организмов приобретать новые признаки и особенности индивидуального развития под влиянием среды. Различают модификационную и генотипическую изменчивость.

Модификационная изменчивость - это способность организма реагировать на условия окружающей среды, изменяться в пределах нормы реакции организма.

Наследственная изменчивость - это способность к изменению самого генетического материала.

При всех формах изменчивости имеется генетический контроль и о происшедших изменениях можно судить лишь по фенотипу (по изменению признаков и свойств организма).

Модификации развиваются в естественных условиях среды и подвергаются действию факторов, много раз встречавшихся в процессе филогенеза, то есть норма реакции складывалась исторически.

Модификации, напоминающие проявления мутаций известных генов, называются фенокопии. Они сходны с мутациями, но механизм их возникновения различен (катаракта может быть следствием как мутации, так и фенокопией).

Модификации имеют приспособительное значение и способствуют адаптации организма к условиям окружающей среды, сохраняют гомеостаз организма.

Изучение модификационной изменчивости проводится с помощью близнецового метода (соотносительная роль наследственности и среды в развитии признака) и метода вариационной статистики (изучение количественных признаков).

Генотипическая изменчивость связана с качественными и количественными изменениями наследственного материала. Она включает комбинативную и мутационную изменчивость.

1. Комбинативная изменчивость. Уникальность каждого генотипа обусловлена комбинативной изменчивостью, которая определяется новыми сочетаниями аллелей генов в генотипе. Достигается это в результате 3-х процессов: два из них связаны с мейозом, третий - с оплодотворением.

2. Мутационная изменчивость. При мутационной изменчивости нарушается структура генотипа, что вызвано мутациями. Мутации - это качественные, внезапные, устойчивые изменения в генотипе.

Существуют различные классификации мутаций.

По уровню изменения наследственного материала (генные, хромосомные, геномные);

По проявлению в фенотипе (морфологические, биохимические, физиологические);


По происхождению (спонтанные, индуцированные);

По их влиянию на жизнь организма (летальные, полулетальные, условно летальные);

По типам клеток (соматические и генеративные);

По локализации в клетке (ядерные, цитоплазматические).

Генные мутации связаны с молекулой ДНК - нарушение нормальной последовательности нуклеотидов, свойственной данному гену. Это может быть вызвано изменением количества нуклеотидов (выпадением или вставкой) или их заменой.

Мутации появляются в генотипе с определённой частотой и часто проявляются фенотипически. Некоторые из них являются причиной возникновения генных (молекулярных) болезней. В организме имеются механизмы, ограничивающие неблагоприятный эффект мутаций: репарация ДНК, диплоидный набор хромосом, вырожденность генетического кода, повтор (амплификация) некоторых генов.

Хромосомные мутации (аберрации) заключаются в изменении структуры хромосом (внутрихромосомные и межхромосомные).

Внутрихромосомные мутации: делеции, дупликации, инверсии. При делециях и дупликациях изменяется количество генетического материала, а при инверсиях - его расположение. При межхромосомных мутациях происходит транслокация наследственного материала, обмен участками между негомологичными хромосомами.

Геномные мутации заключаются в изменении числа отдельных хромосом (гетероплоидия) или нарушении геномного числа хромосом (полиплоидия).

Хромосомные и геномные мутации являются причинами хромосомных болезней. Разработана система обозначений мутаций (Денверская и Парижская классификация).

Мутации имеют значение в онто- и филогенезе, они приводят к появлению новых свойств наследственного материала: генные - появлению новых аллелей, хромосомные аберрации - к образованию новых групп сцепления генов, геномные мутации - новых генотипов. Они обеспечивают фенотипическое разнообразие организмов.

Мутагенез (мутационный процесс)

Мутационный процесс - процесс возникновения, формирования и реализации наследственных нарушений. Основой мутационного процесса являются мутации. Мутации происходят как в естественной среде обитания организмов, так и в условиях направленного воздействия мутагенами. В зависимости от этого различают спонтанный и индуцированный мутагенез.

Спонтанный мутагенез - это самопроизвольный процесс возникновения мутаций под влиянием естественных факторов среды. Существует несколько гипотез относительно генеза спонтанных мутаций: естественная радиация, наличие генов-мутаторов, определенное соотношение мутагенов и антимутагенов и др.По современным данным мутации возникают при нарушении процесса репликации и репарации ДНК.

Спонтанный мутационный процесс характеризуется определенной интенсивностью (частотой генных, хромосомных и геномных мутаций), непрерывностью, ненаправленностью, отсутствием специфичности; он является одной из биологических характеристик вида (стабильность генотипа) и протекает постоянно. Частота спонтанных мутаций подвергается генному контролю (ферменты репарации) и параллельно влиянию естественного отбора (появление новых мутаций уравновешивается их элиминацией). Познание закономерностей спонтанного мутагенеза, причин его возникновения необходимо для создания специальных методов слежения за мутациями, чтобы контролировать их количество у человека.

Индуцированный мутагенез - возникновение мутаций под влиянием направленных специальных факторов внешней среды - мутагенов.

Способностью индуцировать мутации обладают различные мутагены физической, химической и биологической природы, которые вызывают соответственно радиационный, химический и биологический мутагенез.

Физические мутагены: ионизирующее излучение, ультрафиолет, температура и др. Ионизирующая радиация оказывает непосредственное действие на гены (разрыв водородных связей ДНК, изменение нуклеотидов), хромосомы (хромосомные аберрации) и геномы (изменение числа и наборов хромосом). Эффект радиации сводится к ионизации и образованию свободных радикалов. Разные формы живых организмов характеризуются различной чувствительностью к радиации.

Химические мутагены (лекарственные препараты, никотин, алкоголь, гербициды, пестициды, кислоты, соли и др.) вызывают генные, реже хромосомные мутации. Мутагенный эффект больше у тех соединений, которые способны взаимодействовать с ДНК в период репликации.

Биологические мутагены (вирусы, живые вакцины и др.) вызывают генные мутации и хромосомные перестройки. Мутагенный эффект избирателен в отношении отдельных генов.

При оценке индуцированных мутаций учитывают индивидуальный и популяционный прогноз. Все виды мутагенеза опасны при вовлечении больших популяций людей.

Для защиты живых организмов от поражающего действия мутагенов используются антимутагены, организуется комплексная система генетического мониторинга и химического скрининга.

Репарация генетического материала

ДНК отличается высокой стабильностью, которая поддерживается особой ферментативной системой, находящейся под генетическим контролем, она же принимает участие и в репарации. Многие повреждения ДНК, которые могли бы реализоваться в виде мутаций при действии сильных мутагенов, исправляются репаративными системами.

Генетические различия в активности репарирующих ферментов определяют разную продолжительность жизни и устойчивость организмов к действию мутагенов и канцерогенов. У человека некоторые болезни (прогерия) связаны с нарушением процесса репликации и репарации ДНК. Моделью для изучения генетических механизмов репарации является заболевание –пигментная ксеродерма. Известно, что 90% мутагенов являются и канцерогенами. Существует несколько теоретических концепций (теорий) канцерогенеза: мутационная, вирусно-генетическая, концепция онкогена и др.

Генетический мониторинг

Человек контактирует с разнообразными химическими веществами, проверить каждое на возможность мутагенного (канцерогенного) эффекта или генотоксичности не представляется возможным, поэтому проводится отбор определенных химических веществ для исследования на мутагенность.

Выбор того или иного вещества определяется:

Его распространением в среде обитания человека и контактом с ними большей части населения (лекарства, косметические средства,

продукты питания, пестиды и др.)

Структурным сходством с известными мутагенами и канцерогенами (нитрозосоединения, ароматические углеводороды) Для исследования на мутагенность

Используется несколько тест-систем (около 20 из 100 имеющихся методов) т.к. нет универсального теста для выявления всех типов мутаций в половых и соматических клетках.

Применяется ступенчатость тестирования (в начале на микроорганизмах, дрозофиле и др. объектах и только потом в клетках человека.)

Иногда достаточно использование одной тест-системы, для выявления мутагенности вещества и соответственно невозможность его использования.

Генетический мониторинг - это система долговременных популяционных исследований по контролю за мутационным процессом у человека (слежение за мутациями). Он складывается из:

Химического скрининга - экспериментальной проверки мутагенности химических соединений (слежение за мутациями в тест-системах)

Прямого анализа частот генных мутаций

Феногенетического мониторинга.

Система тестирования состоит из просеивающей и полной программы, возможность их использования определяется степенью контакта населения с данным химическим веществом.

Прочитайте:
  1. E. Неявка на судебное заседание без уважительной причины.
  2. Адаптивный ответ, его неспецифичность. Примеры. Механизмы.
  3. Анатомия застенных желез тонкого отдела кишечника. Топография, назначение, видовые особенности у домашних животных и птиц. Иннервация, кровоснабжение, отток лимфы.
  4. Аномалии сократительной деятельности матки. Причины. Классификация. Методы диагностики.
  5. Аппендикулярный инфильтрат. Причины, клиника неосложненного и осложненного инфильтрата. Лечебно-диагностическая тактика. Методы лечения.
  6. Биотоки. Опыты Гальвани и Дюбуа-Реймона. Потенциал покоя и его природа. Мембранно-ионная теория Ю.Бернштейна. Условия и причины поляризации мембраны.
  7. Биоэлектрические процессы. Потенциал действия. Его основные части. Механизм возникновения (на примере ПД скелетной мускулатуры).
  8. В зависимости от этиологии развивается клиническая картина перитонита или внутреннего кровотечения.

Любые мутации могут возникнуть спонтанно или быть индуцированными. Спонтанные мутации появляются под влиянием неизвестных природных факторов и приводят к ошибкам при репликации ДНК. Индуцированные мутации возникают под воздействием специальных направленных факторов, повышающих мутационный процесс. Мутагенным действием обладают факторы физической, химической и биологической природы.

Мутагенные факторы среды - факторы , вызывающие появление мутаций .

Мутагенным действием обладают факторы физической, химической и биологической природы.

Среди физических мутагенов наиболее сильное мутантное действие оказывает ионизирующая радиация – рентгеновские лучи, α-, β-, γ-лучи. Обладая большой проникающей способностью, при действии на организм они вызывают образование свободных радикалов ОН или НО 2 из воды, находящейся в тканях. Эти радикалы обладают высокой реакционной способностью. Они могут расщеплять нуклеиновые кислоты и другие органические вещества.

Облучение вызывает как генные, так и хромосомные мутации. Ультрафиолетовое излучение характеризуется меньшей энергией, не вызывающей ионизацию тканей. Его действие приводит к образованию тимидиновых димеров. Присутствие их в ДНК обусловливает ошибки при ее репликации.

Химические мутагены должны обладать следующими качествами:

Высокой проникающей способностью;

Свойством изменять коллоидное состояние хромосом;

Определенным действием на состояние хромосомы или гена.

К химическим мутагенам можно отнести многие неорганические и органические соединения, например кислоты, щелочи, перекиси, соли металлов, формальдегид, пестициды, дефолианты, гербициды, колхицин и др.

Некоторые вещества способны усиливать мутационный эффект в сотни раз по сравнению со спонтанным. Их называют супермутагенами . К ним относят нитрозосоединения – иприт, диэтилнитрозамин, уретан и др.

Некоторые лекарственные препараты также обладают мутагенным эффектом, например, цитостатики, производные этиленимина, нитрозомочевина. Они повреждают ДНК в процессе репликации.

Известны также биологические факторы мутагенеза . Вирусы оспы, кори, ветряной оспы, эпидемического паротита, гепатита, краснухи и др. способны вызывать разрывы хромосом. Вирусы могут усиливать темпы мутации клеток хозяина за счет подавления активности репарационных систем. Есть данные о возрастании числа хромосомных перестроек в клетках человека после пандемий, вызванных вирулентными вирусами.

Канцерогене́з - сложный патофизиологический процесс зарождения и развития опухоли.

Родентициды характеризуются различной токсичностью. Например, антикоагулянт варфарин относительно безопасен для негрызунов, т.к. токсичность зависит от частоты его приема. В то же время одни из самых эффективных родентицидов натрия фторацетат и фторацетамид чрезвычайно токсичны для человека.

Стрихнин, ядовитый алкалоид , все еще изредка используемый в качестве пестицида, является причиной случайных отравлений. Его действие связано с повышением нервной возбудимости, что приводит к тяжелым судорогам, обусловленным блокадой тормозных нейронов, медиатором которых является глицин.

Другие родентициды включают белый или желтый элементарный фосфор. Фосфид цинка реагирует с водой и кислотой в желудке и вызывает образование чрезвычайно ядовитого фосфина. Сульфат таллия - очень опасный химикат, действующий на все виды грызунов, поэтому его применение строго регулируется во многих странах.

Гербициды в основном обладают низкой токсичностью по отношению к человеку, однако могут быть причиной смерти. Диоксин и его производные, встречающиеся в гербицидах в виде примеси, являются побочным продуктом производственных процессов с использованием хлора (например, изготовление бумаги). Некоторые эпидемиологические исследования с участием людей показывают, что диоксин в высоких концентрациях обладает низкой токсичностью, а другие - что он может быть канцерогенным и тератогенным фактором.

Некоторые замещенные динитрофенолы , используемые для уничтожения сорняков, вызывают отравления человека динитроортокрезолом. Краткосрочная токсичность динитрофенола обусловлена разобщением окислительного фосфорилирования. Смерть или выздоровление наступают в течение 24-48 час.

Один из самых распространенных в мире гербицидов - паракват - является причиной многих случайных или суицидальных отравлений. Он поражает легкие, печень и почки. Тяжесть латентных легочных поражений требует проведения срочных лечебных мероприятий. Многие другие гербициды обладают относительно низкой токсичностью.
Фунгициды являются гетерогенной группой химических веществ, и некоторые из них широко исследуют на токсичность. Дитиокарбаматы обладают тератогенной и/или канцерогенной активностью.

Канцерогенез и мутагенез

Известно, что химические вещества , такие как винилхлорид, бензол и нафтиламин, вызывают рак у человека при длительном воздействии. Правительство США опубликовало список из 250 потенциальных канцерогенов, которые являются продуктами химического синтеза или были получены непреднамеренно. Этих веществ следует избегать.

Целые популяции подвергаются воздействию канцерогенов. Известные примеры включают сигаретный дым, который содержит множество веществ, вызывающих рак. Постоянное потребление этанола увеличивает риск рака пищевода и печени. Сжигание угля приводит к загрязнению пищи канцерогенными полициклическими ароматическими углеводородами (канцерогенные углеводороды обнаружены в угольной смоле). Некоторые пищевые продукты содержат натуральные канцерогены (растительного и грибного происхождения), и этим отчасти, вероятно, объясняются региональные различия в частоте определенных форм рака, обнаруженные в мире.
Для многих профессий на протяжении последних 150 лет была обнаружена связь с достаточно специфическими видами рака.

В настоящее время установлены очевидные факторы риска и устранены те рабочие места, которые не обеспечены адекватной защитой. В других случаях причинные связи между профессией и риском рака признаны лишь возможными, поскольку формально должны быть представлены доказательства присутствия канцерогенов. Известно, например, о чрезвычайно высокой частоте рака у пожарных.

Химический канцерогенез включает несколько стадий. Большое значение имеет природа , а также продолжительность, доза и частота воздействия. Химическая индукция рака включает процессы инициации, активизации и прогрессирования.

Инициация (инициирующими агентами) представляет собой процесс превращения нормальных клеток в опухолевые, обусловленный воздействием канцерогенного вещества на ДНК. Ряд дополнительных реакций участвует в превращении трансформированных клеток в злокачественные. У животных химические активаторы повышают частоту опухолей или уменьшают латентный период опухолевого роста, хотя сами не действуют непосредственно на ДНК и не вызывают мутаций.

Мутация - это нарушение последовательности цепочки ДНК, которое может изменить клеточный фенотип. Спонтанный мутагенез происходит постоянно за счет неизвестных механизмов. Клетки обладают собственными защитными и восстановительными механизмами, которые обычно предотвращают появление таких мутаций. Однако мутагены способны в 10-1000 раз повысить скорость мутагенеза и преодолеть клеточные механизмы защиты. Весьма вероятно, что мутации вызывают рак в клетках с дефицитом ферментов, восстанавливающих ДНК, либо в клетках, в которых клеточное деление протекает настолько быстро, что ДНК полностью не восстанавливается. По-видимому, многие раковые опухоли начинаются как обычная мутация или являются наследственными.

Действие химических канцерогенов может быть либо генотоксическим, либо эпигенетическим. Генотоксические канцерогены ковалентно связываются с ДНК и вызывают генетические мутации. Мутагенетический потенциал можно определить с помощью ряда тестов, например теста Эймса на бактериальную мутагенность. Генотоксические канцерогены, в свою очередь, можно подразделить на подклассы в зависимости от того, подвергаются ли они биотрансформации для активации или нет. Большинство генотоксических канцерогенов на самом деле являются проканцерогенами, или агентами, зависимыми от активации. Типичные проканцерогены - нитрозамины.

Эпигенетические канцерогены усиливают эффекты генотоксических проканцерогенов за счет следующих механизмов:
увеличения эффекторной концентрации генотоксина;
усиления метаболической активации генотоксина;
снижения детоксикации генотоксина;
ингибирования восстановления ДНК;
усиления пролиферации клеток с поврежденной ДНК.

Опухолевые активаторы повышают канцерогенную активность после воздействия генотоксина. Действие форболовых эфиров, являющихся активаторами опухолей, осуществляется через активацию протеинкиназы С. Мощный опухолевый активатор - диоксин. Иммуносупрессивные средства также являются эпигенетическими канцерогенами, которые подавляют иммунную систему и тем самым способствуют канцерогенезу.

Мутагенез – процесс образования мутаций. Факторы, вызывающие мутации – это мутагены. Мутагены воздействуют на генетический материал особи, вследствие чего может измениться фенотип.
Канцерогенез – процесс образования опухолей. Установлено, что при канцерогенезе изменения происходят на молекулярно-генетическом уровне и затрагивают механизмы, отвечающие за размножение, рост и дифференцировку клеток.

Классификации мутаций.

По причинам, вызвавшим мутации:

Спонтанные (самопроизвольные). Происходят по действием естественных мутагенных факторов без вмешательства человека.

Индуцированные. Результат направленного воздействия определенных мутагенных факторов.

По мутировавшим клеткам:

Генеративные. Происходят в половых клетках. Передаются по наследству.

Соматические. Происходят в соматических клетках. По наследству передаются только при вегетативном размножении.

По исходу для организма:

Летальные. Несовместимые с жизнью.

Полулетальные. Снижают жизнеспособность организма.

Нейтральные. Не влияют на процессы жизнедеятельности.

Положительные. Повышающие жизнеспособность. Возникают редко, но имеют большое значение для прогрессивной эволюции.

По изменениям генетического материала:

Геномные. Обусловлены изменениями числа хромосом. Обнаруживаются цитогенетическими методами. Всегда проявляются фенотипически.

Полиплоидия (кратное гаплоидному увеличение числа хромосом (3n, 4n, 5n), имеет большое значение для селекции., гаплоидия). У млекопитающих и человека – это летальные мутации

Гаплоидия (1n). Н-р, трутни у пчел. Жизнеспособность снижается. В данном случает проявляются все рецессивные гены. Для млекопитающих и человека мутация летальна.

Анеуплоидия. Некратное гаплоидному уменьшение или увеличение числа хромосом (2n+\-1). Разновидности:

Трисомия. 2n + 1. В генотипе 3 гомологичные хромосомы. Болезнь Дауна

Моносомия. В наборе одна из пары гомологичных хромосом. 2n – 1. Моносомия по первым крупным парам хромосом для человека летальна.

Нулесомия. Отсутствие пары хромосом. Летальная мутация.

Хромосомные (оберации). Обусловлены изменением структуры хромосом. Могут быть внутри и межхромосомными. Выявляются цитогенетичесмкими методами.

Внутрихромосные. Перестройки внтури хромосом

Межхромосомные. Происходят между негомологичными хромосомами. Транслакация, дубпликации.

Генные (точечковые, трансгенации). Связаны с изменениями структуры гена (молекулы ДНК). В большинстве случаев проявляются фенотипически. Являются причиной нарушения обмена веществ, генных болезеней. Частота проявления – 1-2%. Выявляются биохимическими методами и методами рекомбинантной ДНК.

Изменения структурных генов. Сдвиг рамки считывания. Приводит к миссенс-мутациям (изменению смысла кодонов и образованию других белков). Нонсенс-мутации – образование бессмысленных кодонов, не кодирующих аминокислоты.

Изменения функциональных генов.

Белок репрессор не подходит к гену-оператору. Структурные гены работают постоянно. Белки синтезируются все время

Белок-репрессор не снимается индуктором. Структурные гены постоянно не работают. Синтеза белка нет.

Нарушение чередований репрессий и индукций.