Требования предъявляемые к приводам сцепления. Сцепление автомобиля. Гидромуфта. Принцип работы

Требования предъявляемые к приводам сцепления. Сцепление автомобиля. Гидромуфта. Принцип работы

Все, что связывает двигатель с ведущими колесами, составляет трансмиссию автомобиля . Трансмиссия в автомобиле выполняет, как правило, следующие функции:


  • передает крутящий момент от двигателя к ведущим колесам;

  • изменяет величину и направление крутящего момента;

  • перераспределяет крутящий момент между ведущими колесами.
В зависимости от вида преобразуемой энергии различают следующие виды трансмиссии:

  • механическая трансмиссия (передает и преобразует механическую энергию );

  • электрическая трансмиссия (преобразует механическую энергию в электрическую и после передачи к ведущим колесам – электрическую в механическую энергию );

  • гидрообъемная трансмиссия (преобразует механическую энергию в энергию потока жидкости и после передачи к ведущим колесам – энергию потока жидкости в механическую энергию );

  • комбинированная трансмиссия (электромеханическая, гидромеханическая – т.н. «гибриды» ).
Наибольшее применение на современных автомобилях нашла механическая трансмиссия . Механическая (гидромеханическая) трансмиссия, изменение крутящего момента в которой происходит автоматически, называется автоматической трансмиссией .

В конструкции трансмиссии в качестве ведущих колес могут использоваться передние, задние, а также и передние, и задние колеса. Если в качестве ведущих колес используются задние колеса, автомобиль имеет задний привод , а если передние – передний привод . Привод на передние и задние колеса имеют полноприводные автомобили .

У автомобилей с разными типами привода конструкция трансмиссии имеет существенные различия, как по составу элементов, так и по их устройству.

Трансмиссия заднеприводного автомобиля имеет следующее устройство:


  • сцепление;

  • коробка передач;

  • карданная передача;

  • главная передача;

  • дифференциал;

  • полуоси.
Сцепление предназначено для кратковременного отсоединения двигателя от трансмиссии и плавного их соединения при переключении передач, а также предохранения элементов трансмиссии от перегрузок.

Коробка передач служит для изменения крутящего момента, скорости и направления движения автомобиля, а также длительного разъединения двигателя от трансмиссии.

Карданная передача обеспечивает передачу крутящего момента от вторичного вала коробки передач на вал главной передачи, расположенных под углом друг к другу.

Главная передача служит для увеличения крутящего момента и передаче его на полуоси ведущих колес. На заднеприводных автомобилях применяется гипоидная главная передача (оси шестерен не пересекаются).

Дифференциал предназначен для распределения крутящего момента между ведущими колесами. Он позволяет полуосям вращаться с разными угловыми скоростями, что необходимо при повороте автомобиля.

Трансмиссия переднеприводного автомобиля имеет следующее устройство:


  • сцепление;

  • коробка передач;

  • главная передача;

  • дифференциал;

  • шарниры равных угловых скоростей;

  • приводные валы (полуоси).
На переднеприводных автомобилях главная передача и дифференциал размещаются в картере коробки передач.

Шарниры равных угловых скоростей (ШРУС) служат для передачи крутящего момента от дифференциала к ведущим колесам. В конструкции трансмиссии используется, как правило, два шарнира для соединения с дифференциалом (внутренние шарниры) и два шарнира для соединения с колесами (внешние шарниры).

Между шарнирами располагаются приводные валы .

Трансмиссии полноприводных автомобилей имеют различные конструкции. В совокупности они образуют системы полного привода . Различают следующие виды систем полного привода:


  • постоянный полный привод;

  • полный привод подключаемый автоматически;

  • полный привод подключаемый вручную.
Разные виды систем полного привода имеют, как правило, разное предназначение. Вместе с тем можно выделить следующие общие преимущества данных систем, определяющие область их применение:

  • эффективное использование мощности двигателя;

  • лучшая управляемость и курсовая устойчивость на скользком покрытии;

  • повышенная проходимость автомобиля.

Система постоянного полного привода

Система постоянного полного привода (другое наименование –система полного привода Full Time , в переводе «полное время») обеспечивает постоянную передачу крутящего момента на все колеса автомобиля.

Система имеет следующее общее устройство:


  • сцепление;

  • коробка передач;

  • раздаточная коробка;

  • карданные передачи задней и передней оси;

  • главные передачи задней и передней оси;

  • мелколесные дифференциалы задней и передней оси;

  • полуоси колес.

Схема системы постоянного полного привода

Постоянный полный привод применяется как на автомобилях с заднеприводной компоновкой (продольное расположение двигателя и коробки передач), так и на автомобилях с переднеприводной компоновкой (поперечное расположение двигателя и коробки передач). Такие системы различаются в основном по конструкции раздаточной коробки и карданных передач.

Известными системами постоянного полного привода являются система Quattro от Audi , XDrive от BMW .

Сцепление обеспечивает кратковременное отсоединение двигателя от трансмиссии при переключении передач, а также предохранение элементов трансмиссии от перегрузок.

Коробка передач служит для изменения крутящего момента, скорости и направления движения автомобиля. В автоматической коробке передач функцию сцепления выполняет гидротрансформатор.

Раздаточная коробка предназначена для распределения крутящего момента по осям автомобиля и его увеличения при необходимости. Современная раздаточная коробка включает цепную передачу, обеспечивающую передачу крутящего момента на переднюю ось, понижающую передачу в виде планетарного редуктора (в отдельных конструкциях) и межосевой дифференциал.

Наличие межосевого дифференциала является отличительной особенностью раздаточной коробки системы постоянного полного привода. Для полной реализации полноприводных возможностей в конструкции системы предусматривается блокировка межосевого дифференциала .

Блокировка дифференциала может осуществляться автоматически или вручную. Современными конструкциями автоматической блокировки межосевого дифференциала является вискомуфта , самоблокирующийся дифференциал Torsen , многодисковая фрикционная муфта .

Ручная (принудительная) блокировка дифференциала производится водителем с помощью механического, пневматического, электрического или гидравлического привода.

На некоторых конструкциях раздаточной коробки предусмотрены функции как автоматической, так и ручной блокировки межосевого дифференциала.

Карданные передачи обеспечивают передачу крутящего момента от вторичных валов раздаточной коробки на валы главных передач.

Главная передача служит для увеличения крутящего момента и его передачи на полуоси колес.

Межколесный дифференциал обеспечивает распределение крутящего момента между ведущими колесами и позволяет полуосям вращаться с различными угловыми скоростями. В системах полного привода межколесный дифференциал применяется на передней и задней оси.

Для реализации полноприводных возможностей один или оба дифференциала имеют возможность блокировки. Блокировка межколесного дифференциала может осуществляться вручную или автоматически (вискомуфта, дифференциал Torsen). На современных автомобилях применяется электронная блокировка дифференциала.

Принцип работы системы постоянного полного привода заключается в следующем. Крутящий момент от двигателя передается на коробку передач и далее на раздаточную коробку. В раздаточной коробке момент распределяется по осям. При необходимости водителем может быть включена понижающая передача. Далее крутящий момент через карданные валы передается на главную передачу и межосевой дифференциал каждой из осей. От дифференциала крутящий момент через полуоси передается на ведущие колеса. При проскальзывании колес одной из осей автоматически или принудительно производится блокировка межосевого и межколесного дифференциалов.

Система полного привода подключаемого автоматически

Система полного привода подключаемого автоматически (другое наименование – система полного привода On demand , в переводе «по требованию») является перспективным направлением развития полного привода легковых автомобилей. Данная система обеспечивает подключение колес одной из осей в случае проскальзывания колес другой оси. В обычных условиях эксплуатации автомобиль является передне- или заднеприводным.

Практически все ведущие автопроизводители имеют в своем модельном ряду автомобили с автоматически подключаемым полным приводом. Известными системами полного привода подключаемого автоматически являются 4Motion от Volkswagen , 4Matic от Mercedes .

Система полного привода подключаемого автоматически имеет следующее общее устройство:


  • сцепление;

  • коробка передач;

  • главная передача передней оси;

  • межколесный дифференциал передней оси;

  • раздаточная коробка;

  • карданная передача;

  • муфта подключения задней оси;

  • главная передача задней оси;

  • межколесный дифференциал задней оси;

  • полуоси.

Схема системы полного привода подключаемого автоматически

Раздаточная коробка в системе автоматически подключаемого полного привода представляет собой, как правило, конический редуктор. Понижающая передача и межосевой дифференциал отсутствуют.

В качестве муфты подключения задней оси используются следующие устройства:


  • вискомуфта;

  • электронноуправляемая фрикционная муфта.
Известной фрикционной муфтой является муфта Haldex , которая используется в системе полного привода 4Motion концерна Volkswagen.

Принцип работы системы полного привода подключаемого автоматически , оборудованного фрикционной муфтой, заключается в следующем. Крутящий момент от двигателя, через сцепление, коробку передач, главную передачу и дифференциал передается на переднюю ось автомобиля. Крутящий момент через раздаточную коробку и карданные валы также передается на фрикционную муфту. В нормальном положении фрикционная муфта имеет минимальное сжатие, при котором на заднюю ось передается до 10% крутящего момента. При проскальзывании колес передней оси по команде электронного блока управления срабатывает фрикционная муфта и передает крутящий момент на заднюю ось. Величина передаваемого на заднюю ось крутящего момента может изменяться в определенных пределах.

Система полного привода подключаемого вручную

Система полного привода подключаемого вручную (другое наименование - система полного привода Part Time , в переводе «частичное время») в настоящее время практически не применяется, т.к. является низкоэффективной. Вместе с тем, именно эта система обеспечивает жесткую связь передней и задней оси, передачу крутящего момента в соотношении 50:50 и поэтому является по-настоящему внедорожной.

Устройство системы полного привода подключаемого вручную в целом аналогично системе постоянного полного привода. Основные отличия – отсутствие межосевого дифференциала и возможность подключения переднего моста в раздаточной коробке. Необходимо отметить, что в ряде конструкций постоянного полного привода используется функция отключения переднего моста. Правда в данном случае отключение и подключение это не одно и то же.

В которой передача крутящего момента обеспечивается силами трения, гидродинамическими силами или электромагнитным полем. Такие муфты называются соответственно фрикционными, гидравлическими и электромагнитными.

Сцепление служит для временного разъединения двигателя и трансмиссии и плавного их соединения. Временное разъединение двигателя и трансмиссии необходимо при переключении передач, торможении и остановке автомобиля, а плавное соединение – после переключения передач и при трогании автомобиля с места. При движении автомобиля сцепление во включенном состоянии передает крутящий момент от двигателя к коробке передач и предохраняет механизмы трансмиссии от динамических нагрузок, возникающих в трансмиссии. Так, нагрузки в трансмиссии возрастают при резком торможении с двигателем, пре резком включении сцепления, неравномерной работе двигателя и резком снижении частоты вращения коленчатого вала , наезде колес на неровности дороги и т.д.

На автомобилях применяют различные типы сцеплений ().

Схема 1 – Типы сцеплений, классифицированных по различным признакам.

Все указанные сцепления, кроме центробежных , являются постоянно замкнутыми , т.е. постоянно включенными и выключаемыми водителем при переключении передач, торможении и остановке автомобиля.

На автомобилях наибольшее применение получили фрикционные сцепления . Однодисковые сцепления применяются на легковых автомобилях, автобусах и грузовых автомобилях малой и средней грузоподъемности, а иногда и большой грузоподъемности.

Двухдисковые сцепления устанавливают на грузовых автомобилях большой грузоподъемности и автобусах большой вместимости.

Многодисковые сцепления используются очень редко – только на автомобилях большой грузоподъемности.

Гидравлические сцепления, или гидромуфты, в качестве отдельного механизма на современных автомобилях не применяются. Ранее они использовались в трансмиссии автомобилей, но только совместно с последовательно установленным фрикционным сцеплением.

Электромагнитные сцепления имели некоторое применение на автомобилях, но широкого распространения не получили в связи со сложностью их конструкции.

Требования к сцеплениям

Одним из основных показателей сцепления является его способность к передаче крутящего момента. Для ее оценки используется понятие величины коэффициента запаса сцепления ß , определяемой следующим образом:

ß = М СЦ / М max

где М СЦ – максимальный крутящий момент, который может передать сцепление,

М max – максимальный крутящий момент двигателя.

Помимо общих требований, касающихся каждого узла автомобиля, к сцеплению предъявляется ряд специфических требований, среди которых:

Типовое устройство сцепления - однодисковое, фрикционное

Фрикционным сцеплением называется дисковая муфта, в которой крутящий момент передается за счет силы сухого трения.

Широкое распространение на современных автомобилях получили однодисковые сухие сцепления. Однодисковым сцеплением называется фрикционная муфта, в которой для передачи крутящего момента применяется один ведомый диск.

Однодисковое сцепление () состоит из ведущих и ведомых деталей , а также из деталей включения и выключения сцепления.

Схема 2 – Однодисковое фрикционное сцепление

а – включено; б – выключено; 1 – кожух; 2 – нажимной диск; 3 – маховик; 4 – ведомый диск; 5 – пластина; 6 – пружина; 7 – подшипник; 8 – педаль; 9 – вал; 10 – тяга; 11 – вилка; 12 – рычаг

Ведущими деталями являются маховик 3 двигателя, кожух 1 и нажимной диск 2, ведомыми – ведомый диск 4, деталями включения – пружины 6, деталями выключения – рычаги 12 и муфта с подшипником 7.

Кожух 1 прикреплен болтами к маховику . Нажимной диск 2 соединен с кожухом упругими пластинами 5. Это обеспечивает передачу крутящего момента от кожуха на нажимной диск и перемещение нажимного диска в осевом направлении при включении и выключении сцепления. Ведомый диск 4 установлен на шлицах первичного (ведущего) вала 9 коробки передач.

Сцепление имеет привод, в который входят педаль 8, тяга 10, вилка 11 и муфта с выжимным подшипником 7.

При отпущенной педали 8 сцепление включено, так как ведомый диск 4 прижат к маховику 3 нажимным диском 2 усилием пружин 6. Сцепление передает крутящий момент от ведущих деталей к ведомым через поверхности трения ведомого диска с маховиком и нажимным диском. При нажатии на педаль 8 () сцепление выключается, так как муфта с выжимным подшипником 7 перемещается к маховику, поворачивает рычаги 12, которые отодвигают нажимной диск 2 от ведомого диска 4. В этом случает ведущие и ведомые детали сцепления разъединены, и сцепление не передает крутящий момент.

Однодисковые сцепления просты по конструкции, дешевы в изготовлении, надежны в работе, обеспечивают хороший отвод теплоты от трущихся поверхностей, чистоту выключения и плавность включения. Они удобны в обслуживании при эксплуатации и ремонте.

В однодисковых сцеплениях сжатие ведущих и ведомых деталей может производиться несколькими цилиндрическими пружинами, равномерно расположенными по периферии нажимного диска. Оно также может осуществляться одной диафрагменной пружиной или конической пружиной, установленной в центре нажимного диска.

Сцепление с периферийными пружинами несколько сложнее по конструкции (большое количество пружин). Кроме того, поломка одной из пружин в эксплуатации может быть не замечена, что приведет к повышенному износу сцепления.

Сцепление с одной центральной пружиной проще по конструкции и надежнее в эксплуатации. При центральной диафрагменной пружине сцепление имеет меньшие массу и габаритные размеры, а также меньшее количество деталей, так как пружина кроме своей функции выполняет еще и функцию рычагов выключения сцепления. Кроме того, она обеспечивает равномерное распределение усилия на нажимной диск. Сцепления с центральной диафрагменной пружиной применяются на легковых автомобилях из-за трудности изготовления пружин с большим нажимным усилием при малых габаритных размерах сцепления.

Сцепление с центральной конической пружиной имеет преимущество в том, что нажимная пружина не соприкасается с нажимным диском и поэтому при работе сцепления меньше нагревается и дольше сохраняет свои упругие свойства. Кроме того, благодаря конструкции нажимного механизма сцепление может передавать большой крутящий момент при сравнительно небольшой силе пружины. Такие сцепления применяются на грузовых автомобилях большой грузоподъемности.

Приводы сцеплений

Приводы фрикционных сцеплений могут быть механическими, гидравлическими и электромагнитными. Наибольшее применение на автомобилях получили механические и гидравлические приводы.

Механические приводы просты по конструкции и надежны в работе. Однако они имеют меньший КПД, чем гидравлические приводы сцеплений.

Гидравлические приводы , имея большие КПД, обеспечивают более плавное включение сцепления и уменьшают усилие, необходимое для выключения сцепления. Но гидравлические приводы сложнее по конструкции и в обслуживании, менее надежны в работе, более дорогостоящи и требуют больших затрат при обслуживании в эксплуатации.

Для облегчения управления сцеплением в приводах часто применяют механические усилители в виде сервопружин, пневматические и вакуумные. Так, сервопружины уменьшают максимальное усилие выключения сцепления на 20…40%.

Оно предназначено для кратковременного отсоединения двигателя от трансмиссии и плавного их соединения при переключении передач, а также предохранения элементов трансмиссии от перегрузок и гашения колебаний. Сцепление автомобиля располагается между двигателем и коробкой передач .

В зависимости от конструкции различают следующие типы сцепления: фрикционное, гидравлическое, электромагнитное.

Фрикционное сцепление передает крутящий момент за счет сил трения. В гидравлическом сцеплении связь обеспечивается за счет потока жидкости. Электромагнитное сцепление управляется магнитным полем.

Самым распространенным типом сцепления является фрикционное сцепление. В зависимости от количества дисков различает следующие виды фрикционного сцепления: однодисковое, двухдисковое и многодисковое.

В зависимости от состояния поверхности трения сцепление может быть сухое и мокрое. В сухом сцеплении используется сухое трение между дисками. Мокрое сцепление предполагает работы дисков в жидкости.

На современных автомобилях устанавливается в основном сухое однодисковое сцепление. Конструкция однодискового сцепления включает маховик, нажимной и ведомый диски, диафрагменную пружину, подшипник выключения сцепления с муфтой и вилкой. Все конструктивные элементы сцепления размещаются в картере. Картер сцепления крепиться болтами к двигателю.

При нажатии на педаль сцепления привод сцепления перемещает вилку сцепления, которая воздействует на подшипник сцепления. Подшипник нажимает на лепестки диафрагменной пружины нажимного диска. Лепестки диафрагменной пружины прогибаются в сторону маховика, а наружный край пружина отходит от нажимного диска, освобождая его. При этом тангенциальные пружины отжимают нажимной диск. Передача крутящего момента от двигателя к коробке передач прекращается.

При отпускании педали сцепления диафрагменная пружина приводит нажимной диск в контакт с ведомым диском и через него в контакт с маховиком. Крутящий момент за счет сил трения передается от двигателя к коробке передач.

сцепление. Назначение и типы

Сцеплением называется силовая муфта, в которой передача крутящего момента обеспечивается силами трения, гидродинамическими силами или электромагнитным полем. Такие муфты называются соответственно фрикционными, гидравлическими и электромагнитными.

Сцепление служит для временного разъединения двигателя и трансмиссии и плавного их соединения.

Временное разъединение двигателя и трансмиссии необходимо при переключении передач, торможении и остановке автомобиля, а плавное соединение ‑ после переключения передач и при трогании автомобиля с места, при этом при помощи сцепления осуществляется разгон автомобиля.

При движении автомобиля сцепление во включенном состоянии передает крутящий момент от двигателя к коробке передач и предохраняет механизмы трансмиссии от динамических нагрузок, возникающих в трансмиссии. Такие нагрузки в трансмиссии возникают при резком торможении автомобиля, резком включении сцепления, неравномерной работе двигателя и резком снижении частоты вращения коленчатого вала, а также при наезде колес автомобиля на неровности дороги и т.д.

На автомобилях применяются различные типы сцеплений, которые классифицируются по разным признакам (рис. 1).

Рисунок 1 ‑ Типы сцеплений, классифицированных по различным признакам

Все сцепления, кроме центробежных, являются постоянно замкнутыми, т.е. постоянно включенными и выключаемыми водителем при переключении передач, торможении и остановке автомобиля.

Наибольшее применение на автомобилях получили фрикционные сцепления ‑ однодисковые и двухдисковые.

Однодисковые сцепления применяются на легковых автомобилях, автобусах и грузовых автомобилях малой и средней грузоподъемности, а иногда и большой грузоподъемности.

Двухдисковые сцепления устанавливают на грузовых автомобилях большой грузоподъемности и автобусах большой вместимости.

Многодисковые сцепления используются очень редко ‑ только на грузовых автомобилях большой грузоподъемности.

Гидравлические сцепления, или гидромуфты, в качестве отдельного механизма трансмиссии на современных автомобилях не применяются. Ранее они использовались совместно с последовательно установленным фрикционным сцеплением.

Электромагнитные сцепления широкого распространения не получили в связи со сложностью их конструкции.

Требования к сцеплению

Для надежной работы автомобиля к сцеплению, кроме общих требований к конструкции автомобиля, предъявляются специальные требования, в соответствии с которыми оно должно обеспечивать:

Надежную передачу крутящего момента от двигателя к трансмиссии;

Плавность и полноту включения;

Чистоту выключения;

Минимальный момент инерции ведомых частей;

Хороший отвод теплоты от поверхностей трения ведущих и ведомых частей;

Предохранение механизмов трансмиссии от динамических нагрузок;

Поддержание нажимного усилия в заданных пределах в процессе эксплуатации;

Легкость управления и минимальные затраты физических усилий на управление;

Хорошую уравновешенность.

Выполнение всех указанных требований обеспечить в одном сцеплении невозможно. Поэтому в разных сцеплениях в соответствии с конструкцией выполняются в первую очередь главные для них требования.

Рассмотрим требования, предъявляемые к конструкции сцепления.

Надежная передача крутящего момента от двигателя к трансмиссии.

Сцепление автомобиля должно обеспечивать возможность передачи крутящего момента, превышающего крутящий момент двигателя. При износе фрикционных пар, когда сила нажатия пружин ослабевает, сцепление может пробуксовывать. Длительное пробуксовывание сцепления приводит к выходу его из строя.

Момент М C , передаваемый сцеплением, создается в результате взаимодействия поверхностей трения ведомого диска с контртелом (маховиком, нажимным диском).

Максимальное значение передаваемого сцеплением момента определяется уравнением.

М С = М е · β = Р пр · μ · R ср · i (1)

где М е – максимальный крутящий момент развиваемый двигателем, Н·м;

β – коэффициент запаса;

Р пр – усилие пружин сцепления, Н;

μ – коэффициент трения;

R ср – средний радиус ведомого диска, м;

i – число пар трения.

Обычно принимают коэффициент запаса β = 1,2...2,5 в зависимости от типа сцепления и его назначения. Сцепления с регулируемым давлением пружин и сцепления с диафрагменными пружинами имеют наиболее низкое значение коэффициента запаса. Большие значения β коэффициент запаса принимают для сцеплений грузовых автомобилей и автобусов.

Надежная работа сцепления без перегрева и значительных износов особенно важна в тяжелых дорожных условиях движения автомобиля и при наличии прицепа и полуприцепа, когда имеют место более частые включения и выключения, а также буксование сцепления.

Плавность и полнота включения. Сцепление должно включаться плавно, чтобы не вызывать повышенных нагрузок в механизмах трансмиссии и очень больших ускорений автомобиля, которые отрицательно влияют на водителя, пассажиров и перевозимые грузы. Так, например, при резком включении сцепления скручивающие нагрузки в трансмиссии могут быть в 3…4 раза больше максимального крутящего момента двигателя. Это происходит потому, что при быстром отпускании педали управления усилие сжатия ведущих и ведомых частей сцепления в начальный момент создается не только нажимными пружинами, но и кинетической энергией перемещающегося к маховику двигателя нажимного диска и связанных с ним деталей. При этом в момент соприкосновения ведущих и ведомых частей сцепления усилие их сжатия в несколько раз превышает силу нажимных пружин.

При резком включении сцепления уменьшается угловая скорость коленчатого вала двигателя и на трансмиссию передается повышенный крутящий момент:

, (2)

где М е ‑ крутящий момент двигателя;

J е ‑ момент инерции вращающихся частей двигателя;

‑ ускорение вращающихся частей двигателя.

При включении сцепление должно обеспечивать быстрый разгон автомобиля. Максимально допустимое ускорение при трогании автомобиля с места должно быть в пределах 3...4 м/с 2 , чтобы не вызвать дискомфорт пассажиров.

Плавность включения сцепления обеспечивается главным образом благодаря упругим свойствами ведомого диска, которые зависят от его конструкции. Плавности включения сцепления также способствуют пружины гасителя крутильных колебаний. Однако влияние этих пружин незначительно, так как их деформация при включении сцепления невелика. На плавность включения сцепления влияет и упругость деталей привода управления сцеплением. Так, например, в сцеплении с диафрагменной пружиной большую упругость имеют рычаги (лепестки) выключения сцепления, которые выполнены вместе с диафрагменной пружиной.

Наиболее высокую плавность включения обеспечивают многодисковые сцепления. Однако они применяются очень редко и только на тяжелых грузовых автомобилях.

Крутящий момент двигателя должен передаваться на трансмиссию без буксования сцепления.

Полнота включения сцепления достигается специальными регулировками сцепления и его привода. Эти регулировки обеспечивают необходимый зазор между выжимным подшипником муфты выключения сцепления и концами рычагов выключения, а также пропорциональный указанному зазору свободный ход педали сцепления, который обычно составляет 20...40 мм.

При значительном изнашивании трущихся поверхностей ведущих и ведомых частей сцепления указанный зазор уменьшается, и рычаги выключения упираются в выжимной подшипник муфты выключения, что препятствует созданию пружинами необходимого нажимного усилия.

Сцепления с гидравлическим приводом управления могут и не иметь зазора между подшипником муфты выключения и концами рычагов выключения. При этом выжимной подшипник постоянно прижимается к концам рычагов с небольшой силой. При изнашивании трущихся поверхностей рычаги перемещают подшипник с муфтой и через вилку выключения и толкатель поршня рабочего цилиндра привода сцепления вытесняют соответствующее количество жидкости в главный цилиндр привода. При этом регулировочный зазор между толкателем и поршнем главного цилиндра сохраняется. Обслуживание таких сцеплений упрощается.

Чистота выключения. Чистота выключения сцепления характеризует полное разъединение двигателя и трансмиссии, при котором ведущие детали сцепления не ведут за собой ведомые.

При неполном выключении сцепления затрудняется переключение передач (оно происходит с шумом), что приводит к изнашиванию шестерен и синхронизаторов. Если же сцепление выключено не полностью, а в коробке передач включена передача, то при работающем двигателе сцепление будет буксовать. Это приводит к нагреву деталей сцепления и изнашиванию фрикционных накладок ведомого диска.

Чистоте выключения сцепления препятствует трение в ступице ведомого диска, которая установлена на шлицах первичного вала коробки передач. При выключении сцепления ведомый диск находится под действием осевой силы, которая прижимает его к маховику. Значение осевой силы Р о ограничивается силой трения F д в шлицевом соединении ступицы диска и первичного вала коробки передач:

F д = G д · μ д,

где G д ‑ вес ведомого диска;

μ д ‑ коэффициент трения в шлицевом соединении.

При этом в шлицевом соединении создается дополнительная сила трения F т за счет трения между маховиком и фрикционной накладкой ведомого диска:

F т = μ т · μ д · · Р о,

где μ т ‑ коэффициент трения между маховиком и фрикционной накладкой;

μ д ‑ коэффициент трения в шлицевом соединении;

R ср – средний радиус фрикционной накладки ведомого диска;

r ш – радиус шлицов;

Р о – осевая сила.

Таким образом, остаточная осевая сила в однодисковом сцеплении будет равна:

Р´ о = F д + F т = G д · μ д + μ т · μ д · · Р о, (3)

В многодисковом сцеплении остаточная осевая сила подсчитывается последовательным суммированием сил трения, возникающих в шлицевых соединениях всех ведомых дисков.

Остаточная осевая сила в многодисковом сцеплении значительно больше, чем в однодисковом, вследствие этого требуемая чистота выключения многодискового сцепления не обеспечивается. В таком случае необходимо уменьшать остаточную осевую силу, что может быть достигнуто увеличением числа шлицов и тщательной их обработкой или увеличением диаметра шлицевого вала.

В однодисковых сцеплениях полное разъединение двигателя и трансмиссии обеспечивается соответствующим отводом нажимного диска от маховика. В двухдисковых сцеплениях принудительный отвод среднего ведущего диска осуществляется различными специальными устройствами (равноплечим рычагом, упорным стержнем и др.). Зазор между трущимися поверхностями при отводе нажимного диска в однодисковых сцеплениях составляет 0,75...1,00 мм, в двухдисковых ‑ 0,5...0,6 мм, а в многодисковых ‑ 0,25...0,30 мм. При этом ход нажимного диска при выключении сцепления не превышает 1,5...2,0 мм для однодисковых сцеплений и 2,0...2,5 мм для двухдисковых сцеплений.

Чистота выключения сцепления, как и полнота его включения, обеспечивается регулировками свободного хода педали управления и положения концов рычагов выключения сцепления в одной плоскости. При этом точная установка концов рычагов в одной плоскости предотвращает перекос нажимного диска при включении и выключении сцепления. Кроме того, в сцеплениях с периферийными пружинами для достижения чистоты выключения число нажимных пружин кратно числу рычагов выключения, что исключает перекос нажимного диска.

В ряде конструкций сцеплений зазор между рычагами выключения и выжимным подшипником муфты выключения сцепления отсутствует, так как сила давления рычагов на подшипник не превышает 50 Н. В этом случае отсутствие зазора практически не влияет на изнашивание подшипника и позволяет сцеплению включаться полностью независимо от степени износа фрикционных накладок ведомых дисков.

Чистота выключения сцеплений с дисками, работающими в масле (фрикционы), ниже, чем у сцеплений с сухими дисками, особенно при повышении вязкости масла при низких температурах. Требуемая чистота выключения этих сцеплений достигается поддержанием необходимой температуры масла. Для этого, например, сцепление размещают в общем картере коробки передач.

Минимальный момент инерции ведомых частей. Для уменьшения ударных нагрузок шестерен включаемых передач и работы трения в синхронизаторах при переключении передач в коробке передач момент инерции ведомых частей сцепления должен быть минимальным. При включении несинхронизованной передачи ударная нагрузка на зубья шестерен пропорциональна моменту инерции ведомых частей сцепления.

Ударный импульс при включенном сцеплении может быть в 50...200 раз больше, чем ударный импульс, возникающий при переключении передач с выключенным сцеплением.

Снижение момента инерции ведомых частей сцепления достигается уменьшением диаметра ведомого диска и массы фрикционных накладок. Так, диаметр ведомых дисков сцеплений автомобилей большой грузоподъемности обычно не превышает 400 мм. Толщина фрикционных накладок сцеплений составляет 3,3...4,7 мм. Однако это не всегда возможно, так как указанные размеры определяются крутящим моментом, передаваемым сцеплением. Кроме того, при уменьшении диаметра ведомого диска необходимо увеличивать число поверхностей трения, чтобы сцепление могло передавать крутящий момент. Но увеличение числа поверхностей трения при уменьшении диаметра ведомых дисков приводит не к уменьшению, а к значительному увеличению момента инерции ведомых частей сцепления. Так, например, момент инерции ведомых частей у двухдискового сцепления значительно больше, чем у однодискового, рассчитанного на передачу такого же крутящего момента.

Применение фрикционных накладок с повышенным коэффициентом трения (из спеченных материалов) позволяет уменьшить диаметр ведомого диска, но из-за увеличения массы фрикционных накладок момент инерции ведомых частей сцепления не снижается.

Таким образом, уменьшить момент инерции ведомых частей сцепления можно только за счет уменьшения массы ведомого диска. Поэтому ведомый диск выполняют из тонкого стального листа толщиной 2...3 мм.

Для уменьшения удара при переключении передач необходимо также уменьшить разность угловых скоростей вращения шестерен переключаемых передач. Это достигается применением синхронизаторов в коробках передач.

Хороший отвод теплоты от поверхностей трения ведущих и ведомых частей. Стабильная и надежная работа сцепления существенно зависит от его теплового состояния. Поэтому необходимо поддерживать постоянный тепловой режим сцепления.

При трогании автомобиля с места происходит буксование сцепления. Это приводит к нагреву деталей сцепления и выделению теплоты на поверхностях трения его ведущих и ведомых частей. Так, например, одно включение сцепления повышает температуру нажимного диска на 7...15°С. Температура фрикционных накладок ведомого диска также повысится и понизится коэффициент их трения. При этом надежная работа сцепления будет нарушена, так как сцепление будет буксовать не только при трогании автомобиля с места, но и во время движения.

При длительном буксовании сцепления температура его поверхностей трения может превысить 300 °С, тогда как уже при 200 °С коэффициент трения снижается почти в два раза. Высокая температура приводит к вытеканию связующего компонента фрикционных накладок, они становятся сухими, пористыми и быстро изнашиваются.

При высокой температуре также может произойти коробление ведомого и нажимного дисков, появление трещин на нажимном диске и выход сцепления из строя.

Для предохранения сцепления от указанных негативных явлений осуществляют различные конструктивные мероприятия, способствующие хорошему отводу теплоты от трущихся поверхностей ведущих и ведомых частей. Примером могут служить вентиляционные отверстия с металлическими сетками в картере сцепления и большое количество отверстий в кожухе сцепления, сделанные для улучшения циркуляции воздуха; рычаги выключения сцепления, выполненные в форме лопастей вентилятора, охлаждающего сцепление; массивный нажимной диск в виде кольца, обеспечивающий лучший отвод теплоты от ведомого диска; канавки в фрикционных накладках для циркуляции воздуха. Кроме того, канавки в фрикционных накладках служат для удаления под действием центробежных сил продуктов износа, снижающих коэффициент трения. Они также способствуют чистоте выключения сцепления, устраняя присасывание (прилипание) фрикционных накладок к рабочим поверхностям маховика двигателя и нажимного диска.

Для сохранения при нагреве нажимного диска работоспособности нажимных пружин сцепления их устанавливают на термоизоляционных прокладках (шайбах).

Предохранение трансмиссии от динамических нагрузок. Конструкция сцепления во многом определяет величину динамических нагрузок в трансмиссии. Динамические нагрузки, возникающие в механизмах трансмиссии, могут быть единичными (пиковыми) и периодическими.

Пиковые нагрузки могут возникнуть при резком изменении скорости движения автомобиля (резкое торможение с невыключенным сцеплением), резком включении сцепления, наезде на дорожную неровность и неравномерной работе двигателя.

При резком изменении скорости автомобиля, особенно при торможении с невыключенным сцеплением, динамическое нагружение трансмиссии происходит главным образом инерционным моментом вращающихся частей двигателя. При этом величина инерционного момента значительно больше крутящего момента двигателя.

Наибольшего значения пиковые нагрузки в трансмиссии достигают при резком включении сцепления. При этом происходит значительное повышение момента трения сцепления за счет кинетической энергии нажимного диска, перемещающегося к маховику двигателя. Поэтому в механических трансмиссиях могут сильно возрасти динамические нагрузки, так как сцепление начнет буксовать только при значительном увеличении его момента трения.

При резком включении сцепления трансмиссия автомобиля закручивается крутящим моментом двигателя М е и моментом сил инерции М и вращающихся частей двигателя:

М с = М е + М и. (4)

Момент сил инерции (инерционный момент)

М и = ω е ·
, (5)

где ω е ‑ угловая скорость коленчатого вала;

J е ‑ момент инерции вращающихся частей двигателя;

с β ‑ крутильная жесткость трансмиссии.

Следовательно, инерционный момент М и зависит от угловой скорости коленчатого вала в момент резкого включения сцепления и от крутильной жесткости трансмиссии.

Уменьшение инерционного момента и снижение пиковой нагрузки достигается за счет пружин гасителя крутильных колебаний, установленных в ведомом диске сцепления. Однако максимальные пиковые нагрузки при резком включении сцепления ограничиваются буксованием сцепления.

Периодические нагрузки могут возникнуть в трансмиссии вследствие неравномерной работы двигателя и действия крутильных колебаний (неравномерности крутящего момента). Эти нагрузки создают шум и повышенные напряжения в механизмах трансмиссии и часто являются причиной поломок деталей механизмов от усталости, особенно при резонансе, когда частоты возмущающих нагрузок совпадают с частотами собственных колебаний трансмиссии.

Для гашения крутильных колебаний трансмиссии служат специальные гасители пружинно-фрикционного типа. Такие гасители поглощают энергию крутильных колебаний трансмиссии в результате трения их фрикционных элементов (колец, пластин и т.п.).

Работу трения гасителя крутильных колебаний можно определить по следующему выражению:

L т = P г ·μ ·r ср ·α ·i, (6)

где Р г ‑ усилие сжатия фрикционных колец гасителя;

μ ‑ коэффициент трения;

r ср ‑ средний радиус фрикционных колец;

α ‑ угол перемещения (буксования) фрикционных колец;

О П И С А Н И Е

Союа Советских

Социалистических

Республик

Зависимое от авт. свидетельства №

Заявлено 17.II I.1967 (X. 1142127/25-27) с присоединением заявки №

УДК 621.85-756.4(088.8) Приоритет

Комитет по делам иаобретеиий и открытий пои Совете Министров

В, Г. Степанов, А, 3.. Цапский, В. H. Плюхин и В. К. Выков

Заявитель Всесоюзный научно-исследовательский институт землеройного машино. строения

УСТРОЙСТВО ДЛЯ ПРЕДОХРАНЕНИЯ ТРАНСМИССИИ

ОТ ПЕРЕГРУЗОК

Предмет изобретения

Известно устройство для защиты трансмиссии привода рабочего органа землеройных машин, состоящее из датчика и связанного с ним пружинно-рычажного механизма. Датчик выполнен в виде установленного между двигателем и редуктором шкива с планетарной передачей и стопорным приспособлением.

Предложенное устройство отличается тем, что для упрощения конструкции в качестве датчика в нем используется редуктор, установленный на раме на подшипниках, подпружиненный и связанный карданным сочленением с приводным валом.

Другой отличительной особенностью является то, что в пружинно-рычажный механизм введен эксцентрик, что повышает точность срабатывания механизма.

На чертеже изображена схема описываемого устройства.

Крутящий момент передается IIO карданному валу 1 к редуктору 2 и далее на выходной вал

8. Редуктор закреплен не жестко и может поворачиваться относительно вала 4. От этого проворачивания корпус редуктора удерживается с одной стороны пружиной 5, а с другой стороны — упором б, взаимодействующим с выступом 7 корпуса. Рабочая пружина 5 регулируется на передачу предельного крутя.цего момента. Выступ 7 корпуса редуктора через оычаг 8 связан с эксцентриком 9, плечи кото2 рого 10 и ll смещены на 10 — 15 млт относительно мертвой точки. В этом положении эксцентрик удерживается исполнительной пружиной 12 через вал 18, рычаг 14 и тягу 15.

5 При превышении отрегулированной величины крутящего момента пружина 5 сжимается под действием выступа 7, который, переместившись, тянет за собой рычаг 8. Рычаг 8, воздействуя на плечо 10 эксцентрика 9, повора10 чнвает его вокруг оси и переводит плечо 11 и тягу 15 через мертвую точку, освободив через рычаг 14 и вал 18 исполнительную пружину

12. Пружина 12 толкает вперед стержень lб, связанный шарнирно с рычагом 17 муфты

15 сцепления 18, и муфта, таким образом, отключается.

Педаль 19 служит для ножного включения муфты.

Возвращают механизм в состояние готовно20 сти, вставляя рычаг в отверстие 20.

1. Устройство для предохранения трансмис25 сии от перегрузок, например привода экскаватора, содержащее датчик, удерживаемый от проворота отрегулированной на определенной крутящий момент рабочей пружиной и связанным с ним пружинно-рычажным механиз30 мом, под действием которого происходит от220693

Составитель И черныи1бва редактор В. Н. Торопова Техред P. М. Новикова Корректор Л. В. Наделяева

Заказ 2607717 Тираж 530 Подписное

ЦИИИПИ Комитета по делам изобретений и открытий при Совете Министров СССР

Москва, Центр, пр. Серова, д. 4

Типография, пр. Сапунова, 2 ключение привода, отличающееся тем, что. с целью упрощения конструкции, в качестве датчика используется редуктор, который для этой цели установлен на раме на подшипниках и подпружинен, а с приводным валом связан карданным сочленением.