Что такое компьютерная графика и ее виды. Трехмерная графика в современном мире. Трехмерная графика это

Что такое компьютерная графика и ее виды. Трехмерная графика в современном мире. Трехмерная графика это

Как говорилось выше, по способам описания изображений компьютерную графику можно разделить на три основные категории: растровая, векторная и трехмерная графика. Среди двумерной графики особым образом выделяются пиксельная и фрактальная графика. Отдельного рассмотрения требуют также трехмерная, CGI- и инфографика.

Пиксельная графика

Термин "пиксельная графика" (от англ. pixel ) означает форму цифрового изображения, созданного на компьютере с помощью растрового графического редактора, где изображение редактируется на уровне пикселей (точек), а разрешение изображения настолько мало, что отдельные пиксели четко видны.

Распространено заблуждение, что любой рисунок, сделанный с использованием растровых редакторов, – пиксельная графика. Это неверно, пиксельное изображение отличается от обычного растрового технологией – ручным редактированием рисунка пиксель за пикселем. Поэтому пиксельный рисунок отличается небольшими размерами, ограниченной цветовой палитрой и (как правило) отсутствием сглаживания.

Пиксельная графика использует лишь простейшие инструменты растровых графических редакторов, такие как Карандаш, Прямая (линия) или Заливка (заполнение цветом). Пиксельная графика напоминает мозаику и вышивку крестиком или бисером – так как рисунок складывается из небольших цветных элементов, аналогичных пикселям современных мониторов.

Фрактальная графика

Фрактал – объект, формирующийся из нерегулярных отдельных частей, которые подобны целому объекту. Поскольку более детальное описание элементов меньшего масштаба происходит по простому алгоритму, описать такой объект можно всего лишь несколькими математическими уравнениями.

Рис. 8.5.

Фрактальная графика незаменима при создании искусственных гор, облаков, морских волн. Благодаря фракталам легко изображаются сложные объекты, образы которых похожи на природные. Фракталы позволяют описывать целые классы изображений, для детального описания которых требуется относительно мало памяти (рис. 8.5). С другой стороны, фракталы слабо применимы к изображениям вне этих классов.

Трехмерная графика

Трехмерная графика (3D – от англ. 3 Dimensions – три измерения) – три измерения изображения) – раздел компьютерной графики, совокупность приемов и инструментов (как программных, так и аппаратных), предназначенных для изображения объемных объектов (рис. 8.6).

Рис. 8.6.

Трехмерное изображение на плоскости отличается от двумерного тем, что включает построение геометрической проекции трехмерной модели сцены на плоскость (например, экран компьютера) с помощью специализированных программ (однако с созданием и внедрением 3D -дисплеев и 3D -принтеров трехмерная графика не обязательно включает в себя проецирование на плоскость). При этом модель может как соответствовать объектам из реального мира (автомобили, здания, ураган, астероид), так и быть полностью абстрактной (проекция четырехмерного фрактала).

3D-моделирование – это процесс создания трехмерной модели объекта. Задача 3D -моделирования – разработать объемный образ желаемого объекта. С помощью трехмерной графики можно и создать точную копию конкретного предмета, и разработать новое, даже нереальное представление никогда не существовавшего объекта.

Трехмерная графика оперирует с объектами в трехмерном пространстве. Обычно результаты представляют собой плоскую картинку, проекцию. Трехмерная компьютерная графика широко используется на телевидении, в кинематографе, в компьютерных играх и оформлении полиграфической продукции.

Трехмерная графика активно применяется для создания изображений на плоскости экрана или печатаемого листа в науке и промышленности (например, в системах автоматизации проектных работ (САПР)); для создания твердотельных элементов: зданий, деталей машин, механизмов), архитектурной визуализации (сюда относится и так называемая "виртуальная археология"), в современных системах медицинской визуализации.

Трехмерная графика обычно имеет дело с виртуальным, воображаемым трехмерным пространством, которое отображается на плоской, двумерной поверхности дисплея или листа бумаги. Любое изображение на мониторе в силу плоскости последнего, становится растровым, так как монитор – это матрица, он состоит из столбцов и строк. Трехмерная графика существует лишь в нашем воображении – то, что мы видим на мониторе – это проекция трехмерной фигуры, а уже создаем пространство мы сами. Таким образом, визуализация графики бывает только растровая и векторная, а способ визуализации – это только растр (набор пикселей), от количества этих пикселей зависит способ задания изображения.

В настоящее время известно несколько способов отображения трехмерной информации в объемном виде, хотя большинство из них представляет объемные характеристики весьма условно, поскольку работают со стереоизображением. Из этой области можно отметить стереоочки, виртуальные шлемы, 3D -дисплеи, способные демонстрировать трехмерное изображение.

-графика

Термином "CGI-графика" (англ. computergenerated imagery обозначают изображения, сгенерированные компьютером) обозначают неподвижные и движущиеся изображения, сгенерированные при помощи трехмерной компьютерной графики и использующиеся в изобразительном искусстве, печати, кинематографических спецэффектах, на телевидении и в симуляторах. В компьютерных играх обычно используется компьютерная графика в реальном времени, но периодически добавляются и внутриигровые видео, основанные на CGI.

Созданием движущихся изображений занимается компьютерная анимация, представляющая собой более узкую область графики CGI, применимую в том числе в кинематографе, где позволяет создавать эффекты, которые невозможно получить при помощи традиционного грима и аниматроники . Компьютерная анимация может заменить работу каскадеров и статистов, а также декорации.

Инфографика

Термином "инфографика" (от лат. informatio – осведомление, разъяснение, изложение; и др.-греч. graphike – письменный, от grapho – пишу) обозначают графический способ подачи информации, данных и знаний.

Спектр применения инфографики огромен – география, журналистика, образование, статистика, технические тексты. Она помогает не только организовать большие объемы информации, но и более наглядно показать соотношение предметов и фактов во времени и пространстве, а также продемонстрировать тенденции.

Инфографикой можно назвать любое сочетание текста и графики, созданное с намерением изложить ту или иную историю, донести тот или иной факт. Инфографика работает там, где нужно показать устройство и алгоритм работы чего-либо, соотношение предметов и фактов во времени и пространстве, продемонстрировать тенденцию, показать, как что выглядит, организовать большие объемы информации.

Инфографика – это визуальное представление информации. Используется там, где сложную информацию нужно представить быстро и четко.

  • Аниматроника – методика, применяемая в кинематографии, мультипликации, компьютерном моделировании для создания спецэффектов подвижных искусственных частей тела человека, животного или других объектов.

Построение трехмерного изображения

С ростом вычислительной мощности и доступности элементов памяти, с появлением качественных графических терминалов и устройств вывода была разработана большая группа алгоритмов и программных решений, которые позволяют формировать на экране изображение, представляющее некоторую объемную сцену. Первые такие решения были предназначены для задач архитектурного и машиностроительного проектирования.

При формировании трехмерного изображения (статического или динамического) его построение рассматривается в пределах некоторого пространства координат, которое называется сценой . Сцена подразумевает работу в объемном, трехмерном мире - поэтому и направление получило название трехмерной (3-Dimensional, 3D) графики.

На сцене размещаются отдельные объекты, составленные из геометрических объемных тел и участков сложных поверхностей (чаще всего для построения применяются так называемые B-сплайны ). Для формирования изображения и выполнения дальнейших операций поверхности разбиваются на треугольники - минимальные плоские фигуры - и в дальнейшем обрабатываются именно как набор треугольников.

На следующем этапе “мировые ” координаты узлов сетки пересчитывают с помощью матричных преобразований в координаты видовые , т.е. зависящие от точки зрения на сцену. Положение точки просмотра , как правило, называют положением камеры .

Рабочее пространство системы подготовки
трехмерной графики Blender (пример с сайта
http://www.blender.org
)

После формирования каркаса (“проволочной сетки”) выполняется закрашивание - придание поверхностям объектов некоторых свойств. Свойства поверхности в первую очередь определяются ее световыми характеристиками: светимостью, отражающей способностью, поглощающей способностью и рассеивающей способностью. Этот набор характеристик позволяет определить материал, поверхность которого моделируется (металл, пластик, стекло и т.п.). Прозрачные и полупрозрачные материалы обладают еще рядом характеристик.

Как правило, во время выполнения этой процедуры выполняется и отсечение невидимых поверхностей . Существует много методов выполнения такого отсечения, но самым популярным стал метод
Z-буфера
, когда создается массив чисел, обозначающий “глубину” - расстояние от точки на экране до первой непрозрачной точки. Следующие точки поверхности будут обработаны только тогда, когда их глубина будет меньше, и тогда координата Z уменьшится. Мощность этого метода напрямую зависит от максимально возможного значения удаленности точки сцены от экрана, т.е. от количества битов на точку в буфере.

Расчет реалистичного изображения. Выполнение указанных операций позволяет создать так называемые твердотельные модели объектов, но реалистичным это изображение не будет. Для формирования реалистичного изображения на сцене размещаются источники света и выполняется расчет освещенности каждой точки видимых поверхностей.

Для придания объектам реалистичности поверхность объектов “обтягивается” текстурой - изображением (или процедурой, его формирующей), определяющим нюансы внешнего вида . Процедура называется “наложением текстуры”. Во время наложения текстуры применяются методы растяжения и сглаживания - фильтрация . Например, упоминаемая в описании видеокарт анизотропная фильтрация, не зависящая от направления преобразования текстуры.

После определения всех параметров необходимо выполнить процедуру формирования изображения, т.е. расчет цвета точек на экране. Процедура обсчета называется рендерингом .Во время выполнения такого расчета необходимо определить свет, попадающий на каждую точку модели, с учетом того, что он может отражаться, что поверхность может закрыть другие участки от этого источника и т.п.

Для расчета освещенности применяется два основных метода. Первый - это метод обратной трассировки луча . При этом методе рассчитывается траектория тех лучей, которые в итоге попадают в пиксели экрана - по обратному ходу. Расчет ведется отдельно по каждому из цветовых каналов, поскольку свет разного спектра ведет себя по-разному на разных поверхностях.

Второй метод - метод излучательности - предусматривает расчет интегральной светимости всех участков, попадающих в кадр, и обмен светом между ними.

На полученном изображении учитываются заданные характеристики камеры, т.е. средства просмотра.

Таким образом, в результате большого количества вычислений появляется возможность создавать изображения, трудноотличимые от фотографий. Для уменьшения количества вычислений стараются уменьшить число объектов и там, где это возможно, заменить расчет фотографией; например, при формировании фона изображения.

Твердотельная модель и итоговый результат обсчета модели
(пример с сайта http://www.blender.org )

Анимация и виртуальная реальность

Следующим шагом в развитии технологий трехмерной реалистичной графики стали возможности ее анимации - движения и покадрового изменения сцены. Первоначально с таким объемом расчетов справлялись только суперкомпьютеры, и именно они использовались для создания первых трехмерных анимационных роликов.

Позже были разработаны специально предназначенные для обсчета и формирования изображений аппаратные средства - 3D-акселераторы . Это позволило в упрощенной форме выполнять такое формирование в реальном масштабе времени, что и используется в современных компьютерных играх. Фактически, сейчас даже обычные видеокарты включают в себя такие средства и являются своеобразными мини-компьютерами узкого назначения.

При создании игр, съемках фильмов, разработке тренажеров, в задачах моделирования и проектирования различных объектов у задачи формирования реалистичного изображения появляется еще один существенный аспект - моделирование не просто движения и изменения объектов, а моделирование их поведения, соответствующего физическим принципам окружающего мира.

Такое направление, с учетом применения всевозможных аппаратных средств передачи воздействий внешнего мира и повышения эффекта присутствия, получило название виртуальной реальности .

Для воплощения такой реалистичности создаются специальные методы расчета параметров и преобразования объектов - изменения прозрачности воды от ее движения, расчет поведения и внешнего вида огня, взрывов, столкновения объектов и т.д. Такие расчеты носят достаточно сложный характер, и для их реализации в современных программах предложен целый ряд методов.

Один из них - это обработка и использование шейдеров - процедур, изменяющих освещенность (или точное положение ) в ключевых точках по некоторому алгоритму . Такая обработка позволяет создавать эффекты “светящегося облака”, “взрыва”, повысить реалистичность сложных объектов и т.д.

Появились и стандартизируются интерфейсы работы с “физической” составляющей формирования изображения - что позволяет повысить скорость и точность таких расчетов, а значит, и реалистичность создаваемой модели мира.

Трехмерная графика - одно из самых зрелищных и коммерчески успешных направлений развития информационных технологий, часто ее называют одним из основных стимулов развития аппаратного обеспечения. Средства трехмерной графики активно применяются в архитектуре, машиностроении, в научных работах, при съемке кинофильмов, в компьютерных играх, в обучении.

Примеры программных продуктов

Maya, 3DStudio, Blender

Тема очень привлекательна для учащихся любого возраста и возникает на всех этапах изучения курса информатики. Привлекательность для учащихся объясняется большой творческой составляющей в практической работе, наглядным результатом, а также широкой прикладной направленностью темы. Знания и умения в этой области затребованы практически во всех отраслях деятельности человека.

В основной школе рассматривают два вида графики: растровую и векторную. Обсуждаются вопросы отличия одного вида от другого, как следствие - положительные стороны и недостатки. Сферы применения этих видов графики позволят ввести названия конкретных программных продуктов, позволяющих обрабатывать тот или иной вид графики. Поэтому материалы по темам: растровая графика, цветовые модели, векторная графика - будут востребованы в большей мере в основной школе. В старшей школе эта тема дополняется рассмотрением особенностей научной графики и возможностями трехмерной графики. Поэтому будут актуальны темы: фотореалистичные изображения, моделирование физического мира, сжатие и хранение графических и потоковых данных.

Большую часть времени занимают практические работы подготовки и обработки графических изображений с использованием растровых и векторных графических редакторов. В основной школе это, как правило, Adobe Photoshop, CorelDraw и/или MacromediaFlach. Различие между изучением тех или иных программных пакетов в основной и старшей школе в большей мере проявляется не в содержании, а в формах работы. В основной школе это практическая (лабораторная) работа, в результате которой учащимися осваивается программный продукт. В старшей школе основной формой работы становится индивидуальный практикум или проект, где главной составляющей является содержание поставленной задачи, а используемые для ее решения программные продукты остаются лишь инструментом.

В билетах для основной и старшей школы содержатся вопросы, относящиеся как к теоретическим основам компьютерной графики, так и к практическим навыкам обработки графических изображений. Такие части темы, как подсчет информационного объема графических изображений и особенности кодирования графики, присутствуют в контрольных измерительных материалах единого государственного экзамена.













Экран дисплея разбит на фиксированное число видиопекселей, которые образуют графическую сетку (растр) из фиксированного числа строк и столбцов. Размер графической сетки обычно представляется в форме NxM, где N – количество видео пикселей по горизонтали, а М – по вертикале.




В случае черно-белого изображения каждая точка экрана может иметь одно из двух состояний (черное или белое), то есть для хранения ее состояния необходимо 1 бит. То есть растровое черно-белое изображение состоящее из 600 строк и 800 точек в каждой строке (600 х 800) весит байт (58,6Кб).


Цветные изображения формируются в соответствии с двоичным кодом цвета каждой точки, хранящимся в видеопамяти. Цветные изображения могут иметь различную глубину цвета, которая задается используемым количеством бит для кодирования цвета точки. Наиболее распространенными значениями глубины цвета являются 4, 8, 16 или 24 бита на точку.






Например, если цвет одного пикселя определяется 2 битами, то мы имеем 4 (2 2) возможных комбинаций из 0 и 1: 00, 01, 10, 11. То есть можно закодировать 4 цвета. Если глубина цвета 24 бита, то изображение имеет различных цветовых оттенков.


Рассчитаем объем растрового файла с разрешением 800 х 600 глубиной цвета 24 бит на точку 800* 600* 24 = бит = байт = 1406,25 Кбайт = 1.37 Мбайт.


















Сравнение растровой и векторной графики Критерий сравнения Растровая графика Векторная графика Способ представления изображения Изображение строится из множества пикселей Изображение описывается в виде последовательности команд Представление объектов реального мира Эффективно используется для представления реальных объектов Не позволяет получать изображение фотографического качества Качество редактирования изображения При масштабировании и вращении изображения возникают искажения Легко преобразуются без потери качества Особенности печати Легко распечатываются Не печатаются, качество не гарантировано Объем памяти для хранения Для хранения растровых изображений требуется большой объем памяти Векторные изображения занимают относительно небольшой объем памяти.


Цветовые модели можно разделить на три класса: Аддитивные Аддитивные – основанные на сложении цветов Субтрактивные Субтрактивные – основанные на вычитании цветов Перцепционные Перцепционные – основанные на восприятии (перцепция – чувственное восприятие, отражение вещей в сознании через органы чувств)


Аддитивная цветовая модель: red- красный, Green – зеленый, Blue – синий Аддитивную цветовую модель принято обозначать аббревиатурой RGB (red- красный, Green – зеленый, Blue – синий). Пользователь может формировать собственную палитру цветов комбинируя 256 оттенков красного, зеленого и синего цветов (256*256*256= цветов)








Перцепционная цветовая модель HSB HSB – Hue – цветовой тон, оттенок, Saturation – насыщенность, контрастность, Brightness – яркость. HSV HSV – Hue – цветовой тон, Saturation – насыщенность, Value – величина яркости. HLS HLS – Hue – цветовой тон, Lightness – освещенность, Saturation – насыщенность.


Растровые форматы В файлах растровых изображений запоминаются: Размер изображения – количество видео пикселей в рисунке по горизонтали и вертикали; Битовая глубина – число битов, используемых для хранения цвета одного видео пикселя; Данные описывающие рисунок (цвет каждого видео пикселя рисунка), а также некоторая дополнительная информация.


TIFF- поддерживают большинство редакторов растровой графики и настольных издательских систем, редакторы векторной графии, поддерживающие растровые объекты. Рекомендуется для использования при работе с издательскими системами. PSD – собственный формат программы Adobe Photoshop.Данный формат сохраняет изображение с большим количеством рабочей информации, которая использовалась при создании изображения. BMP – формат хранения растровых изображений в операционной системе Windows. Он поддерживается всеми графическими редакторами, работающими под Windows. Рекомендуется для хранения и обмена данными с другими приложениями. JPEG – формат растровых графических файлов, который реализует эффективный алгоритм сжатия (метод JPEG) для отсканированных фотографий и иллюстраций. Алгоритм сжатия позволяет уменьшить объем файла в десятки раз, однако приводит к необратимой потере части информации. Поддерживается приложениями для различных операционных систем. Используется для размещения графических изображений на Web-страницах в Интернете. GIF – Растровый формат с 256 количеством цветов и достаточной степенью сжатия файлов. Применяется только в электронных документах. Включает алгоритм сжатия без потерь информации, позволяющий уменьшить объем файла в несколько раз. Рекомендуется для хранения изображений, создаваемых программным путем (диаграмм, графиков и так далее) и рисунков (типа аппликации) с ограниченным количеством цветов (до 256). Используется для размещения графических изображений на Web-страницах в Интернете. PNG формат растровых графических файлов, аналогичный формату GIF. Рекомендуется для размещения графических изображений на Web-страницах в Интернете. WMF универсальный формат векторных графических файлов для Windows-приложений. Используется для хранения коллекции графических изображений Microsoft Clip Gallery. EPS формат векторных графических файлов, поддерживается программами для различных операционных систем. Рекомендуется для печати и создания иллюстраций в настольных издательских системах. CDR оригинальный формат векторных графических файлов, используемый в системе обработки векторной графики CorelDraw. Если вы собираетесь работать с графическим файлом только в одном данном приложении, целесообразно выбрать оригинальный формат. Если же предстоит передавать данные в другое приложение, другую среду или иному пользователю, стоит использовать универсальный формат. Форматы GIF и JPEG используются преимущественно в Интернет Форматы GIF и JPEG используются преимущественно в Интернет.


Векторные форматы: Векторный формат хранит не коды пикселей, а параметры алгоритмов построения графических объектов. Различные векторные форматы отличаются набором команд и способом их кодирования. Поэтому изображение созданное в одном векторном редакторе, как правило не конвертируется в формат другой программы без погрешностей.




Универсальные форматы Большинство векторных форматов поддерживают и растровые объекты. Это позволяет комбинировать векторную и растровую графику внутри одного рисунка. Универсальные форматы позволят открыть документы, представленные в данных форматах в любых графических и издательских программах.


EPS – рабочий формат программы Adobe Illustrator. Этот формат поддерживается большинством векторных графических редакторов. Экранное изображение недостаточно точно отображает реальное и требует специальных просмотрщиков. СDR – рабочий формат векторного редактора CorelDraw. Многие программы могут импортировать файлы CDR. PDF – является аппаратно-независимым, то есть вывод изображений допустим на любых устройствах.



Трехмерная графика сегодня прочно вошла в нашу жизнь, что порой мы даже не обращаем внимания на ее проявления.

Разглядывая рекламный щит с изображением интерьера комнаты или рекламный ролик о мороженном, наблюдая за кадрами остросюжетного фильма, мы и не догадываемся, что за всем этим стоит кропотливая работа мастера 3d графики.

Трехмерная графика это

3D графика (трехмерная графика) - это особый вид компьютерной графики - комплекс методов и инструментов, применяемых для создания изображений 3д-объектов (трехмерных объектов).

3д-изображение не сложно отличить от двумерного, так как оно включает создание геометрической проекции 3d-модели сцены на плоскость, при помощи специализированных программных продуктов. Получаемая модель может быть объектом из реальной действительности, например модель дома, автомобиля, кометы, или же быть абсолютно абстрактной. Процесс построения такой трехмерной модели получил название и направлен, прежде всего, на создание визуального объемного образа моделируемого объекта.

Сегодня на основе трехмерной графики можно создать высокоточную копию реального объекта, создать нечто новое, воплотить в жизнь самые нереальные дизайнерские задумки.

3d технологии графики и технологии 3d печати проникли во многие сферы человеческой деятельности, и приносят колоссальную прибыль.

Трехмерные изображения ежедневно бомбардируют нас на телевидении, в кино, при работе с компьютером и в 3D играх, с рекламных щитов, наглядно представляя всю силу и достижения 3д-графики.

Достижения современного 3д графики используются в следующих отраслях

  1. Кинематограф и мультипликация - создание трехмерных персонажей и реалистичных спецэффектов. Создание компьютерных игр - разработка 3d-персонажей, виртуальной реальности окружения, 3д-объектов для игр.
  2. Реклама - возможности 3d графики позволяют выгодно представить товар рынку, при помощи трехмерной графики можно создать иллюзию кристально-белоснежной рубашки или аппетитного фруктового мороженного с шоколадной стружкой и т.д. При этом в реального рекламируемый товар может иметь немало недостатков, которые легко скрываются за красивыми и качественными изображениями.
  3. Дизайн интерьеров - проектирование и разработка дизайна интерьера также не обходятся сегодня без трехмерной графики. 3d технологии дают возможность создать реалистичные 3д-макеты мебели (дивана, кресла, стула, комода и т.д.), точно повторяя геометрию объекта и создавая имитацию материала. При помощи трехмерной графики можно создать ролик, демонстрирующий все этажи проектируемого здания, который возможно еще даже не начал строиться.

Этапы создания трехмерного изображения


Для того чтобы получить 3д-изображение объекта необходимо выполнить следующие шаги

  1. Моделирование - построение математической 3д-модели общей сцены и ее объектов.
  2. Текстурирование включает наложение текстур на созданные модели, настройка материалов и придание моделям реалистичности.
  3. Настройка освещения .
  4. (движущихся объектов).
  5. Рендеринг - процесс создания изображения объекта по предварительно созданной модели.
  6. Композитинг или компоновка - постобработка полученного изображения.

Моделирование - создание виртуального пространства и объектов внутри него, включает создание различных геометрий, материалов, источников света, виртуальных камер, дополнительных спецэффектов.

Наиболее распространенными программными продуктами для 3d моделирования являются: Autodesk 3D max, Pixologic Zbrush, Blender.

Текстурирование представляет собой наложение на поверхность созданной трехмерной модели растрового или векторного изображения, позволяющего отобразить свойства и материал объекта.


Освещение
- создание, установка направления и настройка источников освещения в созданной сцене. Графические 3д-редакторы, как правило, используют следующие виды источников света: spot light (расходящиеся лучи), omni light (всенаправленный свет), directional light (параллельные лучи) и др. Некоторые редакторы дают возможность создания источника объемного свечения (Sphere light).

На сегодняшний день домашний компьютер во многих случаях является не только средством для работы с офисными приложениями, но и мощным мультимедийным центром, с помощью которого можно создавать и обрабатывать фотографии, смотреть видеоролики и фильмы, слушать музыку или наслаждаться современными трехмерными видеоиграми.

Мощное развитие цифровых технологий, и в частности цифровой фототехники, превратили современные домашние компьютеры в настоящие фотоархивы, а редактирование всевозможных изображений теперь является одним из самых любимых занятий многих пользователей.

Но как обидно бывает, когда вы пытаетесь открыть на компьютере графический файл, а он не открывается? Наверняка многие из вас уже сталкивались с подобной ситуацией. Так в чем же причина?

Конечно, цифровой фотографией или иллюстрациями на сайтах не исчерпывается весь мир компьютерной графики, которую в общем можно разбить на три большие группы - растровая графика , векторная графика и трехмерная графика . При этом изображения одного типа могут иметь разный формат, который зависит от программ и способов, с помощью которых они были созданы. Давайте разбираться.

Это самый распространенный тип изображений, которые формируются с помощью отдельных точек, называемых пикселями , которые в итоге образуют матрицу фиксированного размера. Каждый пиксель имеет свои геометрические параметры и цветовой оттенок. Из-за крохотного размера точек, человеческий глаз не может различить их по отдельности и в большинстве случаев изображение сформированное таким способом нам кажется однородным. Но стоит только сильно увеличить картинку, как вы увидите, что она состоит из множества разноцветных прямоугольников. К растровой графике относится большинство изображений, которые встречаются нам во время работы на компьютере, включая и цифровые фотографии.

На увеличенном изображении зрачка справа видно, что картинка состоит из множества разноцветных квадратиков.

Основным параметром растровой картинки является ее физическое разрешение, определяющееся количеством точек (пикселей) размещающихся по горизонтали и вертикали. Например, разрешение 1920x1080 означает, что ширина изображения составляет 1920 пикселов, а высота - 1080. Учтите, что при одинаковом размере изображения его разрешение может быть разным, и чем оно выше, тем качественнее картинка. В общем, чем из большего количества точек будет состоять рисунок, тем оно будет реалистичнее.

Растровые изображения, как правило, хранятся в сжатом виде, которое происходит с помощью специальных программных алгоритмов. При этом само сжатие может быть двух видов: без потерь или с потерями. В первом случае картинку можно будет восстановить до оригинального состояния, то есть в котором она была до сжатия, а во втором, как вы понимаете, нет.

Наиболее распространенными форматами, обеспечивающими сжатие без потерь, являются BMP, PNG и GIF. В самом же широко используемом формате JPEG (JPG, JPE) используется сжатие с потерями. Еще один популярный формат TIFF имеет разные настройки сжатия, а вот RAW наиболее часто используется для хранения информации, получаемой с цифровых камер, без внесения в нее каких либо изменений. Практически все полупрофессиональные или профессиональные фотокамеры позволяют сохранять изображения именно в этом формате для последующей его обработки.

Программ, позволяющих создавать, редактировать и тем более просто просматривать растровые картинки великое множество. Но, наверное, самой популярной и профессиональной из них является графический редактор Adobe Photoshop (собственный формат PSD). Возможности этого инструмента воистину впечатляют и смогут удовлетворить потребности самых продвинутых пользователей. При этом Photoshop имеет в своем арсенале некоторые инструменты для работы с векторными и трехмерными изображениями, о которых мы поговорим ниже. Для тех же, кто не готов выкладывать почти тысячу долларов за данный продукт, можно попробовать в деле его облегченный вариант Photoshop Elements, стоимостью $100. Еще одним популярным продуктом в этой категории является редактор GIMP, который часто называют бесплатной альтернативой Photoshop, хотя сами разработчики с этим не согласны.

Впрочем, многим пользователям (особенно начинающим) для просмотра и редактирования растровых изображений хватит тех возможностей, которые предоставляют приложения, встроенные в систему Windows. К их услугам простенький редактор Paint и штатное средство для просмотра фотографий. В более продвинутых редакциях Windows для воспроизведения и каталогизации картинок можно использовать стильную оболочку Windows Media Center.

Для систематизации и упорядочивания коллекций, хранящихся на компьютере фотографий, рисунков и картинок, можно использовать бесплатное приложение Picasa или XnView, а так же более функциональный, но платный (чуть более 1000 рублей) графический редактор ACDSee. Хотя, как уже упоминалось, выбор программного обеспечения для работы с растровыми изображениями очень широк и недостатка, как в платных, так и бесплатных приложениях у пользователей нет.

Векторная графика

В этом случае рисунок состоит уже не из точек, а из различных геометрических объектов - простых фигур, линий, кривых и тех же точек. Большим плюсом такого построения изображений является их масштабируемость без потери качества. То есть если увеличить векторную картинку, она растянется и не распадется на отдельные пиксели, сохранив при этом плавность линий.

Одним из основных недостатков векторной графики является тот факт, что далеко не каждый объект может быть изображен с ее применением. Иногда для создания изображения подобного оригиналу может потребоваться огромное количество объектов различной сложности, что сильно увеличивает размер картинки и время ее отображения. Так же при особо малых разрешениях рисунка его масштабирование может осуществляться некорректно.

Векторная графика наиболее часто используется в простых изображениях, которые не нуждаются в фотореализме. Например, формат PDF использует модель именно этого типа графики.

С большой долей уверенности можно сказать, что самой знаменитой и популярной программой для работы с векторными изображениями является Corel Draw, а файлы, создаваемые с ее помощью, имеют собственный формат CDR. Хотя такие приложения как Adobe Illustrator (собственный формат AI, EPS), Xara Designer (собственный формат XAR), бесплатный Inkscape(собственный формат SVG) и другие имеют так же не малое количество поклонников.

Стоит отметить, что большинство популярных векторных редакторов не ограничиваются возможностями работы только в собственном (иногда закрытом) формате, а поддерживают огромное количество других, как векторных, так и растровых форматов изображений. Например, Corel Draw способен работать с более тридцатью самыми популярными форматами графических файлов.

Трехмерная графика (3 D )

Раздел компьютерной графики, предназначенный для отображения объемных объектов. По сути, трехмерное изображение является геометрической проекцией объемной модели на плоскость. Для его получения сначала происходит моделирование - создание математической 3D-модели сцены и объектов в ней, а затем визуализация (рендеринг) - построение проекции на основе выбранной физической модели.

Одним из основных призваний трехмерной графики является создание движения 3D-модели в пространстве, называемое анимацией, которая в наше время является неотъемлемой частью не только для современных компьютерных игр, но и телевидения, кинематографа, а так же научного и промышленного моделирования. Так же трехмерная графика широко применяется в архитектурной визуализации и печатной продукции.

Самыми популярными программами, используемыми для создания 3D графики и анимации, являются пакеты компании Autodesk: 3DS Max (собственный формат MAX) и Maya (собственный формат MA). Стоит отметить и универсальное комплексное приложение Maxon Cinema 4D (собственный формат C4D) с более простым интерфейсом, чем у продуктов Autodesk и поддержкой русского языка, что делает его особенно привлекательным для русскоязычной аудитории.

Процесс трехмерного моделирования, визуализации и анимации является очень ресурсоемкой задачей, так что если вы решите попробовать свои силы на этом поприще, придется раскошелиться на высокопроизводительный компьютер. Более того, и само программное обеспечение стоит очень недешево. Например, за 3DS MAX просят около 4000 евро. Хотя Autodesk пошла навстречу тем людям, которые не собираются извлекать коммерческую выгоду при использовании этой программы, выпустив для них бесплатную версию, которая становится доступна после регистрации на сайте компании.

Заключение

Наверное, было бы неправильно не сказать несколько слов о компьютерных ресурсах, которые требуются для комфортной работы с графикой. Если в основном вы планируете заниматься лишь просмотром изображений или осуществлять их простое редактирование, то для этих задач подойдет даже самый простой и маломощный ПК. А вот для работы с такими тяжеловесами, как Adobe Photoshop или Corel Draw понадобится достаточно мощный процессор и большой объем оперативной памяти (от 4 Гб). Но самой требовательной к системным ресурсам является трехмерная графика. Здесь для комфортной работы потребуется не только топовый процессор в сочетании с немалым объемом «оперативки» (8 Гб и более), но и мощная видеокарта, со своей собственной видеопамятью и графическим чипом. Недаром, самыми дорогими компьютерами считаются, те, которые ориентированы на любителей современных 3D-игр и людей профессионально работающих с 3D-графикой.

В заключении же хотелось бы сказать следующее. Не смотря на то, что компьютерная графика бывает разных типов, мы с вами, пользователи, видим на экране монитора именно растровую двухмерную картинку. Дело в том, что подавляющее большинство дисплеев, в силу их технологических особенностей, являются матрицей, состоящей из ячеек (пикселей), с помощью которых и формируется видимое изображение. Для вывода векторной графики на подобных устройствах используются программные или встроенные в видеокарту (аппаратные) преобразователи.

А вот трехмерная графика - это лишь плод нашего воображения. Ведь экран монитора может формировать только плоскую (2D) картинку, которая является лишь проекцией объемных объектов, пространство для которых мы придумываем сами. То же самое, касается и новомодных 3D-телевизоров или 3D-мониторов. На самом деле эти устройства показывают обычное двухмерное изображение, которое может быть построено особым способом, при просмотре которого через специальные очки, создается иллюзия объема.

Читатйте также: